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1.0 INTRODUCTION

Acoustic liner is an essential element for the ejector to suppress internal noise for HSCT
application. Thus, a liner technology program is laid out to develop a liner design
methodology, which is aimed at designing, developing, and demonstrating promising

acoustic liner concepts for small as well as large scale mixer-ejector models.

The overall approach to arrive at the liner design methodology under CPC program is based
on the liner optimization model, which is solely based on the laboratory tests of liner
samples, data correlation, and some amount of analytical modeling. Mixer-ejector internal
noise, utilized in the correlation process, is extracted as a component source using semi-
empirical noise prediction model SMEM (i.e., Stone Mixer Ejector Model) from the
measured acoustic farfield data for various mixer-ejector models. These efforts to develop
correlation for impedance and acoustic suppression predictions for bulk absorber and SDOF

type liners are described in a number of reports (Ref. 1-4).

The liner design methodology involves the prediction of farfield noise, including EPNL, for a
treated mixer-ejector in terms of various noise components (i.e., internal, external, and total).
The EPNL computation for a liner design requires prediction models for normal impedance,
acoustic suppression in the ejector, and external noise component for the mixer-ejector. The
normal impedance is predicted by a number of ways, namely, using the existing prediction
models, the correlation developed under current liner technology program, and measured
data acquired in the current liner technology program. Acoustic suppression predictions are
obtained either by a modal analysis method or by currently developed suppression/
impedance correlation. Stone’s noise prediction method (Ref. 5) is utilized to compute
external noise component (i.., premerged and merged together) and thus the internal noise

component is extracted using mixer-ejector test data.

The introductory process of liner design and various parameters for the liners are described in
section 2. Normal impedance and acoustic suppression prediction methods are described in
sections 3 and 4. The procedure for farfield noise estimation using predicted acoustic
suppression for different liner designs is described in section 5. Optimization of liner design
for minimum EPNL with respect to liner parameters is carried out and the results are
presented in section 6. Based on the availability of liner materials (i.e., bulk and facesheet)
and the manufacturing constraints realistic liners are designed. The acoustic characteristics of
these liners and their impact on farfield noise are evaluated and compared with optimum

liners for different scale ejectors in section 7. Concluding remarks are made in section 8.

NASA/CR—2006-214400 1



The liner design methodology, including the input output examples for the computer code, is
briefly described in appendix A. Acoustic characteristics of various liner designs at approach
condition is described in appendix B. SDOF type liner designs for LSM scale mixer-ejector
is presented in appendix C. Test results of LSM build-1 and their comparisons with
predictions are presented in appendix D. Liner optimization and designs for the proposed
LSM build-2 mixer-ejector are described in appendix E. Finally, the relevant references are

listed in the last section.

NASA/CR—2006-214400 2



2.0 ACOUSTIC LINER DESIGNS FOR MIXER-EJECTOR NOZZLES

Design of acoustic liners for ejector treatment is carried out for 1/7-scale, LSM (.e., 0.565-
scale), and full-scale mixer-ejectors. Side and end views of a typical 1/7-scale mixer-ejector
are shown in Figure 1. The flaps and sidewalls of the ejector are treated with acoustic panels
(also called as treatment trays) of different sizes to cover the entire ejector surface. The
acoustic treatment trays for flaps and sidewalls of a 1/7-scale ejector are schematically shown
in Figure 2. The surface area of each treatment tray is about 3”’x1.5” or 2.5”x1.5”. For full-
scale ejector 12°x12” size treatment trays are planned to be used. For each scale an optimized
liner configuration is established. Most designs are performed for bulk absorber type liners.
Some effort is made towards designing SDOF type liners, especially for LSM mixer-ejector
application. A typical bulk absorber liner is shown in figure 3.

Liner design methodology includes the physical design of a liner, prediction of its normal
impedance at the flow and acoustic environment at which it will be used, prediction of
acoustic suppression inside the ejector, and the prediction of acoustic field, including
EPN(AB, in the farfield due to the treatment.

The physical liners may either be bulk absorber or SDOF type with a specific depth D. For
bulk absorber type liner the construction includes a bulk material with a facesheet. In this the
variables include the bulk properties (i.e., its resistivity or density) and facesheet properties
(for perforates: porosity o, thickness t, and hole diameter d, for linear: resistivity). For SDOF
type liner the facesheet properties are the only variables. Utilizing these properties, including
the liner depth, the normal impedance is predicted accounting for the flow Mach number M,
temperature T, and acoustic environment (OASPL) effects. This could be achieved by
utilizing existing prediction methods, the currently developed prediction methods, or
construction of normal impedance utilizing experimental data acquired under the current
program. The objective is to design a liner to achieve optimum impedance, which in terns
gives the maximum acoustic suppression. The optimum specific resistance R and
reactance X range between 1.5 to 2 and -0.5 to 0.0, respectively, are chosen for the liner
designs for maximum acoustic suppression on the basis of past experience. Since the
current prediction models are developed recently, the liner designs described in this report
utilize the existing impedance prediction methods and the current test results.

Utilizing the normal impedance, flow and temperature conditions, and the geometry of the
ejector the acoustic suppression spectrum can be predicted. This can be achieved either by
utilizing a modal analysis method or a semi-empirical correlation. The semi-empirical

NASA/CR—2006-214400 3
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Figure 3. A typical bulk absorber liner for HSCT application.

method is currently developed utilizing the liner technology test data and mixer-ejector test
data. Again, since the correlation is developed recently the results presented in this report are

based on modal analysis acoustic suppression prediction.
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The farfield acoustic (including EPNL) computation for a liner design involves prediction of
internal noise component in the ejector and its radiation to the farfield. In this process,
measured farfield acoustic data for mixer-ejectors are utilized. The predicted acoustic
suppression inside an ejector is significantly different compared to the actual internal
component of measured APWL, especially at lower frequencies. Therefore, a frequency
dependent correction factor, calculated from the predicted acoustic suppression and APWL
for a test case, is utilized to minimize the prediction uncertainties.

Figure 4 illustrates the process of farfield noise estimation due to acoustically treated ejector.
The physical properties of the liner design and the flow and acoustic environment on the
treatment surface of the mixer-ejector (M, T, and OASPL), as shown in Figure 4(a) are used
to estimate the normal impedance of the treatment. This is schematically illustrated in Figure
4(b) along with the optimum impedance. The acoustic suppression internal to the ejector due
to the treatment is then evaluated utilizing the normal impedance, the mean flow parameters
(M, and Ty), and the physical dimension of the treated ejector. This acoustic suppression thus
derived is shown in Figure 4(c). The acoustic suppression reduces the internal noise in the
ejector and the reduced noise is radiated to the farfield. Farfield noise is a function of the
polar angle O and the azimuthal angle ¢. Figure 4(d) schematically illustrates the radiated
internal noise for treated as well as the hardwall ejector configurations. The external noise is
assumed to be the same for both ejector configurations and is also shown in Figure 4(d). The
internal noise difference between the hardwall and treated configurations (shown as shaded
area) is the effect of treatment at this location (¢ and 6). This internal noise reduction is the
performance of the liner. The actual noise field is the sum of internal and the external noise
components as shown in Figure 4(¢). The noise reduction due to the liner, shown by shaded
area in this figure, is the effectiveness of the liner.

It is important to realize the difference between the liner performance and liner effectiveness.
While the liner performance depends only on the liner design, ejector dimension, and flow
and acoustic environments in the ejector, the liner effectiveness depends on these parameters
and on the external noise components. With a best performing liner the effectiveness can be
poor if the external noise is relatively higher compared to the internal component.

PWL, PNL, and EPNL are constructed utilizing the spectral sound pressure levels at various
locations for internal, external, and total noise components. The optimum impedance
maximizes acoustic suppression in terms of ASPL and APWL. In other words the minimum
SPL and PWL are achieved when the liner impedance lies within the optimum levels.
However, EPNL minimization is less critical, since the EPNL involves annoyance factors

NASA/CR—2006-214400 7
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dependant on frequencies. If a liner design achieves optimum impedance at frequencies
critical to EPNL it may not be necessary to achieve optimum impedance at frequencies of

very low annoyance values.

Acoustic suppression or sound power insertion loss and farfield noise estimates for optimum
as well as the realistic liners are made. The acoustic suppression is predicted by using a
modal analysis computer code for rectangular duct treated on two opposing sides. The
remaining two surfaces are considered to be untreated. Hence, an equivalent treatment length
is calculated for the treated ejector, assuming that, the entire treatment is on the two opposing
flap surfaces. The equivalent length is utilized in acoustic suppression prediction.

Based on the measured and CFD data for DSM models for a typical takeoff condition (i.e.,
NPR=3.43, T8=1551°R) the liner designs are carried out for a grazing flow Mach number of
M=0.8, liner static temperature of T=500°F, and a static pressure of 13.24 psi. The cutback
conditions (i.e., NPR=2.48, T8=1291°R) are relatively less severe compared to takeoff and
the corresponding grazing flow Mach number and static temperature are 0.72 and 360°F,
respectively. The boundary layer displacement thickness for the full-scale ejector is assumed
to be 0.20”. The approximate displacement thicknesses used for LSM and 1/7-scale ejectors
are 0.11” and 0.05”, respectively. Based on the internal dynamic pressure data for Gen 2
mixer-ejector nozzles (Ref. 6) the dynamic pressure levels for different scale ejectors are

established.

The nozzle parameters, critical frequencies, and various liner design parameters with respect
to the corresponding scale factors for the three cases, considered in the current effort, are

listed below:

Full Scale LSM 1/7-Scale
Nozzle Parameters:
A8 - Square Inches 1225.7 391 22.6
Linear Scale Factor 1.0 0.565 0.136
Average Sidewall Height - Inches 48.69 2747 6.56
Flap Width - Inches 71.17 40.20 9.643
A1/Ap 7.4 7.4 8.0
ATest! Am 6.7 6.7 6.5
Equivalent Treatment Length - Inches 166.81 94.25 21.48
Liner Parameters:
Peak Noy Frequency - Hz. 3150 5600 22300
Maximum Frequency - Hz. 10000 17900 70700
OASPL , dB- Takeoff 180.0 177.5 171.5
OASPL , dB- Cutback 174.5 171.0 166.0
Displacement Thickness, 5* - Inches 0.20 0.11 0.05

NASA/CR—2006-214400 9



Utilizing the above temperature, pressure, grazing flow, and dynamic pressure conditions for
takeoff and using the set boundary layer displacement thicknesses for different scale liners,
the bulk resistivity, liner depth, and facesheet properties are varied to arrive at optimum liner
designs, such that the desired impedance values are attained at critical frequencies, especially
at and around the peak Noy frequencies. The optimization process is further validated and
improved on the basis of minimum EPNL and is described in section 6.

While, the liner design is based on a typical takeoff condition, the acoustic suppression
spectra for the same liners are computed for the takeoff as well as at cutback (i.e., NPR=2.48,
T8=1291°R) conditions utilizing the ejector flow and geometrical properties. The normal
impedance spectra at cutback are predicted for the liner with the appropriate grazing flow and
dynamic pressure conditions. Based on the measured and CFD data for DSM models for the
takeoff condition (i.e., NPR=3.43, T8=1551°R) the average estimated mean flow Mach
number (M) and static temperature (Ty) are 0.85 and 530°F, respectively. For cutback case
the estimated average mean flow Mach number (M) and static temperature (Tx) are 0.73 and
400°F, respectively. The acoustic characteristics and farfield noise predicted for different
liner designs for three different scales are described in section 7.

NASA/CR—2006-214400 10



3.0 NORMAL IMPEDANCE

Normal impedance of the treatment is essential to predict the acoustic suppression capability
of the mixer-ejector system. This is evaluated by four different methods for the current
application and is briefly described in this section.

3.1 Existing Prediction Method: Several prediction methods are available in the literature to
evaluate normal impedance for acoustic liners accounting for flow, temperature, and acoustic
environment. One of the methods used at GE Aircraft Engines is utilized for the development
of liner design methodology. Following expressions are used to predict normal impedance Z;
(Z;=R +iX , R and X being the resistance and reactance) of various liner designs:

3.1.1 - SDOF Type Liners with Perforated Facesheet

R=(R, +adc+bdc(v,,))

X = (k,(xmc) - cot(k,1l))

Izil = \[(Rgf +adc + bdc(v,m ))Z + (k,» (xmc) — COt(k,-l))z

where

de = ( 32(vmu)(t)J

peale,)d?

[ s)

Tl.5
vmu = (.00001488)
T +120

2

SPL;

_ .0002(10 ® )
Kot 2 sy

p 22
c
t+od
o
5 G — 7‘/5)
(1 + 305(mach)3)

xmc =

a=.8

mach = Grazing flow Mach number
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mach
R, = 5+
0'(2 +1.256 7)

&* = Boundary Layer Displacement Thickness, inch
C4 = Discharge Coefficient

D =Facesheet Hole Diameter, inch

t = Facesheet Thickness, inch

o = Facesheet Porosity

p = Density of Air, gm/cm’

¢ = Speed of Sound, ft/sec

T = Absolute Temperature, Kelvin

SPL = Sound Pressure Level at each frequency, dB
f; = Frequency, Hz

1 = Liner Depth, inch

3.1.2 - SDOF type Liners with Woven Wiremesh (Linear Facesheet)

R = (adc + bdc(v,))

X= (—&n— —cot(k,.l)J
pc

lz)= \/ (adc + bdc(v,)f + (XT’: - cot(k,.l)J

where
de = Ruo (1.5—.2NLF
pc \ .5+.8NLF

pde = | R ( NLF -1 )
100pc \ .5+ .8NLF
&

_.0002(10 ® )

pclz,.|
L 22

c
Xm = Mass Reaction
Ri00 = DC flow resistance of the facesheet at a through flow velocity of 100 cm/sec.

NLF = Nonlinear factor = R;5¢/R0

i
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A normal impedance prediction code is developed utilizing the above expressions for bulk
absorber and SDOF type liner designs. The measured DC flow resistances of bulks and
woven wiremesh type facesheets and facesheet properties of perforates are used in predicting
the normal impedance for various bulk samples with and without facesheets. Normal
impedance expressions for facesheets are based on reference 6. The prediction of bulk
impedance is based on Delany & Bazley method (Ref. 7) and it assumes linear addition of
reactance and resistance of the bulk and facesheet in the calculation of the combined values

for the liner.

Normal impedance of several bulk absorber and SDOF type liner designs is predicted and
compared with the measured data. Following measured data at ambient condition are used for

normal impedance prediction;

Material Description Sample Depth A B R100

Inches Rayls/cm  Rayls. sec/cm’ Rayls/cm
Silicon Carbide - 100 ppi 0.4 5.5 0.0320 8.70
Silicon Carbide - 200 ppi 0.4 23.0 0.1475 37.75
Felt Metal - 5% Dense 04 40.0 0.0800 48.00
T-Foam - 12 Ib/cft 0.5 11.8 0.1040 22.20
T-Foam - 12 Ib/cft 1.3 219 0.1213 34.10
T-Foam - 12 Ib/cft 2.0 243 0.1352 37.80

It should be noted that the samples of 0.4” and 0.5” deep correspond to 1/7-scale liners and
the other two depths of T-Foam samples, namely 1.3” and 2.0, correspond to LSM and full
scale liners, respectively. The same samples are also tested with and without perforated
facesheets to evaluate their normal impedance spectra. Two perforated sheets (0.025”-thick
and 0.045” hole diameter) with 21% and 37% porosities, were used in the impedance

measurement tests.

Since Delany & Bazley method does not account for the bulk nonlinearity, the prediction for
each bulk absorber case is made using A (A is the linear part of resistivity) as well as the
resistivity at 100 cm/sec, Rjgo (i-€., Rig0=A+100B, B being the nonlinear coefficient) values.
Typical comparisons of data with predictions, especially for bulk absorbers pertinent to
HSCT application, are shown in Figures 5 through 11.

Figure 5, for 100 ppi 0.4”-deep Silicon Carbide (SiC), shows good agreement between data
and prediction for bulk with and without facesheets. For resistance predictions with ‘A’ value
seems to be closer to the measured data. Predicted reactance is not influenced by bulk
resistivity. At higher frequencies, while the reactance is slightly under predicted for bulk only
configuration, the trend is reversed for bulk with 21% porous facesheet. If the predicted
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reactance is matched with the data for bulk only configuration and the same predicted
reactance shift is applied to the other two bulk with facesheet cases, the predicted reactance
will be slightly higher compared to data at higher frequencies. This difference will be higher
for a facesheet with lower porosity. This indicates that the linear addition of bulk and
facesheet reactance does not reflect the reality. Similar results for 0.4” deep 200 ppi Silicon
carbide and Feltmetal bulk samples are shown in Figures 7 and 8, respectively. For 200 ppi
Silicon carbide the agreement between data and prediction is good for entire frequency range
for reactance and at lower frequencies up to 7 kHz for resistance. At higher frequencies the
predicted resistance levels are lower compared to measured data. Bulk resistivity R;go gives a
better prediction of resistance than ‘A’ value. For felt metal, while the reactance comparison
is similar to 200-ppi Silicon carbide case, the predicted resistance is lower compared to data
for entire frequency range. The resistance agreement between data and prediction seems to be
better for lower resistive bulk and gradually deviates with increasing resistivity. The
reactance agreement is better for bulk alone and bulk with facesheet of higher porosity.

Measured normal impedance for a 0.5” deep 12 Ibf T-foam sample is compared with
predicted results in Figure 8. Predicted impedance for a 0.7” deep sample compares well with
the measured data. The characteristics of T-foam are quite different from the bulk materials
utilized in developing the prediction code. The relation between speed of sound and the T-
foam resistivity could be different compared to other bulk materials. Comparison of
measured impedance for the 0.5” T-Foam samples (i.e., with and without facesheet) with
0.7” deep sample prediction is shown in Figure 9. Considering the differences in SiC and T-
Foam materials (fiber thickness, weave, etc.) the agreement between data and prediction is

reasonably good.

Measured and predicted impedance spectrum for 12 1bf T-Foam samples of 1.3” and 2.0”
deep are shown in Figures 10 and 11, respectively. The influence of cavity depth on
impedance is considerably reduced with increased bulk depth. For 1.3” deep samples the
agreement between data and prediction is good for resistance. For bulk only configuration the
reactance agreement is very good. For bulk with facesheets the reactance agreement
deteriorates with increasing frequency and with decreasing facesheet porosity. For 2.0” deep
sample the resistance agreement between data and prediction is poor at lower frequencies.
Reactance is overpredicted at most frequencies.

In general, the agreement between the data and prediction is acceptable for the materials
considered such that, the prediction code can be used to design the liners for different scale
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mixer-ejectors. However, better prediction for HSCT liner designs is being developed
utilizing the more relevant test data under the liner technology program.

3.2 Using Measured Ambient Normal Impedance: A large number of normal impedance
measurements are made for various bulk and SDOF type liner designs at ambient conditions
for the development of normal impedance prediction methods (Ref. 3). Attempt is made to
utilize the measured data to derive the normal impedance of various liner designs accounting
for flow, temperature, and acoustic environment effects. The prediction method described in
section 3.1 is utilized in this process to evaluate the relative impedance due to flow,
temperature, and acoustic environment. The relative impedance spectra are added to the
measured ambient data to obtain the final results. The prediction method is used to predict
the normal impedance at ambient condition at which the measurement is made for a liner
design. Normal impedance is also predicted at the desired flow, temperature Tqes, and
acoustic conditions for the same liner design. Multiplying the following temperature factor
normalizes the frequency for the desired prediction;

[T.../T..)> Tamb being the ambient temperature.

Thus the relative impedance is derived and is added to the measured impedance with respect
to normalized frequency. Figures 12 and 13 show typical constructed normal impedance
along with the measured and predicted results with respect to actual frequency for a full scale
liner design. It should be noted that the measured data is available in narrowband up to 20
kHz. and the predicted and constructed data are obtained in 1/3-octabe band up to 10 kHz.
Figure 12 shows the impedance results for a 100-ppi 2”-deep bulk absorber with a perforated
facesheet for takeoff and cutback conditions. The predicted resistance at the desired
temperature agrees well with the constructed values. The predicted reactance seems to be
higher compared to the constructed values, especially at higher frequencies. Similar results at
cutback conditions are shown in Figure 13 for 2”-deep T-Foam bulk absorbers of different
bulk densities. While the agreement between predicted and constructed data is reasonable for
8 1bf T-Foam, it is not so for 12 Ibf T-Foam. For this case the constructed impedance levels

are significantly off from the prediction.

Similar results for LSM scale liner designs are shown in Figures 14 and 15. Figure 14 shows
the impedance plots for 1.2”-deep 100 ppi SiC bulk absorbers with facesheets of different
porosity for takeoff conditions. Reasonable agreement is observed between constructed and
predicted results. Predicted resistance levels are slightly lower and reactance levels are
slightly higher compared to the constructed data. Figure 15 shows the similar results for two
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different T-Foam bulk absorbers with 3 layers of paper construction (Ref 3). While the
agreement between predicted and constructed impedance levels are reasonably good for T-
Foam with papers of 80 g/m2 the agreement is not so good for the T-Foam liner with papers
of 50 g/m2.

Finally, similar results for a 1/7-scale liner design are shown in Figure 16 for takeoff and
cutback conditions. For 1/7-scale the normal impedance is required up to 80 kHz for acoustic
suppression evaluation. Since the measured data is only available up to 20 kHz the predicted
data at the desired condition is utilized above 20 kHz. The predicted data is shifted to match
the constructed levels at 20 kHz. and used above 20 kHz. This process is again performed
with respect to normalized frequency. The results shown in Figure 16 are for a 0.5”-deep 100
ppi SiC bulk absorber with a 37% porous perforated facesheet. Agreement between predicted
and constructed data is very well for reactance and is reasonably good for resistance.

3.3 Using Measured Ambient Normal Impedance and Measured Relative In-situ
Impedance due to Flow & Temperature: In addition to normal impedance measurements
at ambient condition a number of tests are conducted in a flow duct facility to evaluate the
effect of grazing flow Mach number and temperature of heated flows on normal impedance
for bulk absorber and SDOF type liners (Ref. 3). These data can be directly used to derive
normal impedance of a liner design in desired flow and temperature conditions. The
evaluated relative impedance using the measurements is available at a number of set Mach
numbers and temperature conditions. To utilize the data at any other condition not the same
as measured conditions it is necessary to interpolated/extrapolated the data. Again, the data is
limited to 20 kHz. Data above this frequency would require a prediction model. The
predicted results can, then be shifted to match with the constructed data at 20 kHz (similar to

what is described in section 3.2).

Figure 17 shows the effect of grazing flow Mach number on the normal impedance for 0.57-
deep bulk absorbers with perforated facesheet. The data at M=0.0 is the normal impedance
measured at ambient condition. The relative impedance evaluated from in-situ impedance
measurements (Ref. 3) are then added to the ambient data to account for the grazing flow
effects. Figure 18 shows the effect of grazing flow temperature at M=0.55 for the same bulk
absorber liners. Again, the adders to the ambient data are the relative impedance due to
M=0.55 and relative impedance due to temperature difference relative to the ambient. This
process is performed with respect to normalized frequency.
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Figure 16. Construction of normal impedance spectra for a 1/7-scale 0.5”-deep 100 ppi
Silicon Carbide liner with a 37% porous facesheet (t=0.0257, d=0.045").
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ppi Silicon Carbide and (b) 12 Ibf T-Foam panels with 20% porous
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3.4 Current Prediction Method: The current normal impedance prediction methods for
various liner designs are developed using the measured ambient normal impedance and
measured in-situ impedance at different grazing flow Mach numbers and temperatures. In
addition, measured boundary layer parameters (i.e., displacement thickness) and DC flow
resistance data for various panels are utilized in the development of these prediction methods.
Correlated expressions, relevant results, and the physical description of the development

work are presented in a separate report (Ref. 4).

Comparisons of normal impedance are made between the existing prediction (Prediction —
Old), the current prediction (Prediction — New), and the evaluated data, described in section
3.3 (Measured) in Figures 19 through 21. Figure 19 shows the impedance comparisons for
0.5”-deep 100 ppi SiC and 12 Ibf T-Foam absorbers with perforated facesheet at ambient
condition without any grazing flow. Agreement between data and current prediction seems to
be better compared to the old prediction. Similar conclusion can be drawn from the results of
Figure 20, which are for the same absorbers of Figure 19 but with a grazing flow Mach
number of 0.8. Similar comparisons at a heated condition of 400°F at a grazing flow Mach
number of 0.8 are shown in Figure 21. While, the agreement between new prediction with
data is reasonably good for 100 ppi SiC, the agreement is not so good for the 12 Ibf T-Foam
absorber. In general, the predicted normal resistance at and around the ant-resonance
frequency is much higher compared to the measured data. At this stage it may not be possible
to improve the prediction method due to the program closeout. However, it is essential to
improve the prediction methods in future when the HSCT program will continue.

NASA/CR—2006-214400 34



&—=a Prediction - New L
o~ e----0 Prediction - Old
— L&—* Measured
w
O
E o
—
% -
[= o4
N
s
i
w0
P
[s2]
)
w N
e
~N
= \
(73 R
7 i
w \
c —QV
\‘\
pei \\\‘ - Y ety
d D ——*"’ﬁ-.--""— o
P
) 2 70 12 13 16 18 20
FREQUENCY, kHz
@
s—=a Prediction - New
~ | o--—-o Prediction - Old
« L4—* Measured 7 . Nl s
w ’///’ =~ ‘\\ /‘— "_‘__— '\m
Q 1 N, N e
E o " TS . _““,__—.__-,-.’ ~
5 R
i o N—"
.
N /:/, /
) o i N .
i (b) 12 Ibf Standard T-Foam |
< _ X
W / N\
i / 1\
m -
wn / A \\ /" “\\
/ ‘\
(ub’ ~ / _/‘ N /’ \\‘ B Vi
=z o~ '/ y S /
< FAV : P
B o "\ / / 7N AN /, =
(‘T) - 2 rd / N “\ .
i \ ~ S NN .
@ \ / - \\////"
- Ly V/ rd o \?\
w ‘:‘ O /._-/""J 1 e L [T
[~] p‘i‘:‘:::—" ___________ -
e 2 k] 10 12 14 16 18 20

_ o FREQUENCY, kHz

Figure 19. Comparison of normal impedance spectra between data and predictions for 0.5”-
deep bulk absorber liners with 40% porous facesheet (t=0.025”, d=0.04") at
ambient condition, M=0, OASPL=154 dB.

NASA/CR—2006-214400 35



(2]
s—=a Prediction - New /\
o | o—-o Prediction - Old = \~ Y
+—-—+ Measured A Y
- F - ~ 1y
- I \ \ ==
g o A\ ) .
ﬁ ] - ‘\‘ \ ‘\‘ ’.—/ = _/-’-"'—J
Q _ o \‘ \‘ - =2 — —
I i \ \ e
@ 7 \
q‘ 57 / \\ =y
/ (2)100 ppi Silicon Carbide
[ A \ :
v . - -
/ AN
- 7 v
{' \ ! \ \
’ LY 1
[T+] \ ! |‘
« /1 N/ | .
/ N A
™ ¥ K X
w / \ \
Q / 13 h
= ; [ .
= 0 { /1 \
2 ~F / F A \
@ \ / / N y
4 wl / // s AUANRY
~ 3% 7 AN
“\\ /// ’/ ~\~ NN
AN =] o ~, R
N e D
0 g
o 4 10 12 14 1 i
_ FREQUENCY, kHz
. _
o—=a Prediction - New
o~ | o--—-o Prediction - Old
« L4 Measured TN TN —
w =\ — D |
% (=] /-f'::’—‘ AY > // /‘:_—“‘-\
< 7z < ~ T
"5 L _"' \\-\_ __"::,——' 1
ﬁ ) /:;' v
T R g
0 /l K 7
o |/
i (b) 12 Ibf Standard T-Foam
< i N —— . A
o / 1\
m 1
™ / Fe "’.\\ /I—-\\ /q
[1¢] 4 / VA \\" \
O 7 Fd \
Z W / 4 \ -
= \ / / /”\\ \\ V a
@ I yiva FARNN \ A 7
m ‘\ /"' / \‘sm ‘\ - v
T wl \ 7 S ="
-~ [} “<d 4
"\ / ,L N
“:.\ / [ ol e g
e ¥
=) 4 12 14 16 18 20

0
FREQUENCY, kHz
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4.0 ACOUSTIC SUPPRESSION PREDICTION DUE TO EJECTOR TREATMENT

Acoustic suppression internal to a treated ejector can be evaluated either by modal analysis
technique or by semi-empirical methods based on measured data. For the current program
both these methods are available for HSCT application. Uniform flow and temperature
conditions are assumed in both these methods. Normal impedance spectra for the treatment
are the main input for acoustic suppression evaluation. In addition, the ejector geometry, flow
conditions, and the boundary layer displacement thickness on the ejector surface are required

as inputs.

4.1 Modal Analysis Technique: A rectangular duct modal analysis computer program is
adapted to evaluate the acoustic suppression performance of treated ejectors. The analytical
method is simplified to duct modal analysis with the assumption of equal modal energy
distribution. The physical background of this method is described in Reference 1. Currently,
the acoustic suppression due to the first 50 transverse modes along the two treated flaps (with
hard sidewalls) is accounted for. Acoustic suppression due to successive modes, up to 10
transverse modes, for three treated mixer-ejector models (i.e., full-scale, LSM, and 1/7-scale)
at takeoff and cutback conditions are shown in Figures 22 through 24. Similar results
covering 50 transverse modes at an interval of 5 modes are shown in Figures 25 through 27.
Based on the model size and flow conditions different number of modes are being cut-on at
different frequencies. The first 10 modes cover most acoustic suppression up to the peak
levels. The first 50 modes, as considered in the current analysis, cover the acoustic
suppression for frequencies up to about 5, 10, and 40 kHz for full-scale, LSM, and 1/7-scale
size ejectors. Apparently, several more modes (of the order of 110 to 120) are to be included
in the analysis to cover the acoustic suppression for the entire frequency range of interest.
The contribution from these additional modes may not change the peak suppression level and
its frequency, but expected to increase the acoustic suppression at higher frequencies.

4.2 Semi-Empirical Models for Acoustically Treated Mixer-Ejector Suppressors:
Measured farfield data for a number of mixer-ejector tests are used in the development of
semi-empirical models to predict acoustic suppression inside treated ejectors. A mode cut-off
ratio is applied in this approach. Normal impedance used in this computation is predicted
from various correlation schemes for bulk absorber liners. Normal impedance prediction
schemes are developed using the laboratory test data acquired under the current program
(Refs. 1 and 3). The development process for normal impedance and acoustic suppression
evaluation, performed by Dr. E. J. Rice, is described in Reference 4. Figure 28 shows
comparisons between the predicted acoustic suppression with measured APWL data for a
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Figure 28. Comparison of measured APWL with predicted acoustic suppression for a 1/7
scale mixer-ejector treated with 100 ppi 0.5”-deep Silicon Carbide liner with a
37% porous facesheet (t=0.025”, d=0.045").

NASA/CR—2006-214400 46



fully treated 1/7-scale mixer-ejector (see Figures 1 and 2) at two different
aerothermodynamic conditions. The data is presented with respect to full-scale frequency.
The agreement between the data and prediction is reasonably good. For lower pressure ratio
condition the agreement between data and prediction is much better compared to the similar
comparison for higher pressure ratio case. The discrepancies between data and prediction at
NPR=3.43 could be due to the inaccuracy in the normal resistance prediction as shown in
Figure 21(a). These discrepancies in impedance and acoustic suppression need to be

minimized by improving the prediction models.

The liner design methodology currently utilizes the modal analysis method for acoustic
suppression prediction. The currently developed method by Rice under the HSCT program is
not utilized in liner design development due to the program closeout. However, a code based
on the current method is available for acoustic suppression prediction.

NASA/CR—2006-214400 47






5.0 PREDICTION OF FARFIELD NOISE INCLUDING EPNDB USING
PREDICTED ACOUSTIC SUPPRESSION SPECTRUM

The objective is to predict farfield noise including EPNdB for different ejector treatment not
being tested for farfield noise measurements, so that, a more effective treatment design can
be achieved. The first step towards this objective is to develop a correlation between the
internal noise component in the farfield with the acoustic suppression or insertion loss
(predicted or measured) due to treatment in the ejector. Extraction of internal noise
component from measured farfield data for mixer-ejector systems are described in Reference
3. The measured farfield data for NRA model with mixer 8, tested in Cell 41 of GEAE, are
utilized in the current analysis. The flaps and sidewalls for the treated and hardwall
configurations were 21.7” long (i.e., 160” for full scale). Half-inch deep 100-ppi Silicon
Carbide bulk absorber was used for the liner. Measured bulk resistivity was 8.45 Rayls/cm. A
37% porous 0.025”-thick (t) perforated facesheet with hole diameter d=0.045" was used in
this liner. The analysis is carried out for takeoff (NPR=3.43, T8=1551°R, V;=2359 ft/sec) and
cutback (NPR=2.37, T8=1238°R, V;=1813 ft/sec) conditions.

5.1 Extracted Noise Components for Farfield Prediction: The extracted internal
component of SPL and PWL spectra and OASPL and PNL directivities at takeoff conditions
for the treated configuration are compared in Figures 29 through 31 with those for the
hardwall data. Similar comparisons for external noise components are shown in Figures 32
and 33. To summarize the results derived from the extraction process the internal and the
external components, and the total SPL and PWL spectra and OASPL and PNL directivities
for hardwall and treated configurations are compared in Figures 34 through 36. Similar
exercise is performed for cutback condition for hardwall and fully treated configurations. The
extracted data for takeoff and cutback conditions are utilized to develop the farfield noise
prediction for different liner designs.

5.2 Construction of Frequency Factors for PWL and SPL Prediction: The extracted
internal component of PWL for takeoff and cutback conditions are used to compute the
measured acoustic suppression APWL due to acoustic treatment, which is the difference of
PWL between hardwall and treated configurations. For the same conditions the acoustic
suppression spectra are also predicted (as described in section 4.0) utilizing the predicted or
measured normal impedance of the liner used in the mixer-ejector. The insertion loss
spectrum should be the same as the internal component of APWL at each condition, if the
insertion loss prediction is accurate and if the APWL computation accounts for azimuthal
variation due to non-axisymmetry of the ejector and the internal noise component extraction
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Figure 31. Comparison of internal components of (a) OASPL and (b) PNL directivities
between fully treated and hardwalled 22.12” long ejector for NRA model

with mixer 8; NPR=3.43, T8=1551°R, V;=2359 fV/sec, M=0.32 {takeoff}.
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used for PWL calculation is accurate. However, significant difference exists between
insertion loss and APWL spectra. To minimize the uncertainties associated with insertion loss
prediction, internal noise extraction process, and azimuthal variation of farfield noise, a
frequency dependent factor y(f), termed as acoustic suppression transfer factor, is
developed to equalize the predicted insertion loss ILo(f) at each frequency with the internal
component of APWLo(f) extracted from measured data.

@)= 10 {(APWLo(£)/10)-(ILo(£)/10)} (1)

Figure 37(a) shows the predicted insertion loss and the corresponding extracted internal
component of APWL spectra for the takeoff condition. A modified version of insertion loss,
by smoothing high frequency data, is also shown in this figure. As expected significant
difference is observed between the insertion loss and APWL spectra. The correlated acoustic
suppression transfer factor y(f), thus derived, is shown in Figure 37(b). The acoustic
suppression transfer factors for modified insertion loss data are shown in Figure 38 for
takeoff and cutback conditions. The transfer factor y(f) seems to be dependent on the ejector
flow conditions. Thus, it is essential to derive y(f) for each condition for liner performance

prediction.

Then, for the same condition, the frequency dependent y(f) is utilized to calculate the internal
component of APWL(f) from the predicted acoustic suppression IL(f) for different liner
designs.

APWL(f) = 10 log {y(D)} + IL(f) @)

The internal component of PWL for treated configuration is calculated as follows;

PWLtreatea(f) =PWLHara(f) - APWL() 3)

The internal component of PWL for hardwall configuration is termed as PWLpaq. The next
step is to develop a procedure to calculate internal component of SPL spectra at various polar
angles O utilizing the internal component of PWL spectrum. Assuming that the internal
component of SPL at a frequency will change by a factor 8(f) compared to the test case, the
internal component of PWL(f) for a treated configuration can be expressed as follows;

PWL(f) = 10 log [EX(8(D)po"(f)) AA] = PWLo(f) + 10 log(8(f)) ~ (4)

Thus, &(f) = 10 {PWLD-PWLD}/10] )
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where; poz(f) = Internal component of SPL at f in linear scale for the test case
PWLo(f) = Internal component of PWL at f in dB for the test case

AA = Elemental area for integration

The internal component of SPL is thus derived using the corresponding test case value (i.e.,
SPLo(f)) as follows;

SPL(f) = SPLo(f) + 10 log(8(f)) (6)

5.3 Prediction of Farfield Noise for Different Liner designs: For the same 1/7-scale mixer-
ejector farfield noise is predicted utilizing the procedure outlined above for three different
liner designs, including the one used for the test case (Design #1). The other two new
designs, termed as Design #2 and Optimum are assumed to have bulk of resistivity 40
Rayls/cm. The facesheets are different for these two designs. The predicted normal
impedance for all three designs is shown in Figure 39. Clearly, the two new designs are
different with respect to their normal impedance compared to Design #1.

Figure 40 shows the predicted insertion loss spectra and the corresponding internal
component of APWL spectra derived using equation (2) for three different liner designs.
Design #1 in this figure is the same as the test case used in the derivation of y(f) for takeoff.
Figure 41(a) shows the internal component of PWL spectra for hardwall and the three treated
configurations at takeoff, derived using Equation (3). The SPL factor 6(f) for the three liner
designs are evaluated using equation (5) and are plotted in Figure 41(b). As expected, the
factor becomes unity for Design #1, since it is the test case.

The internal component of SPL spectra at several polar angles 6 and OASPL and PNL
directivities for the three treated and the hardwall configurations are shown in Figures 42 and
43. PNL directivities are used to compute the internal component of EPNL and are listed in
Figure 43. The external component of farfield noise is assumed to be the same for all treated
configurations for the same aerothermodynamic condition. Thus, the total farfield noise is
constructed using the external (see Figure 32) and respective internal components of SPL
spectra. These spectra are used to compute PWL, OASPL, PNL, and EPNL. Figures 44
through 46 show the total SPL spectra at several polar angles, PWL spectra, and OASPL and
PNL directivities for hardwall and the three treated configurations for takeoff. Computed
EPNL are listed in Figure 45. Similar exercise is performed for cutback condition. The
method described here is also applied to LSM and full-scale liner designs and the farfield

results are obtained.
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5.4 Validation of the Use of Frequency Factor for Different Liner Designs: The farfield
noise prediction for different liner designs are made with the assumption that the frequency
factors y(f) and &(f) are the same for each case. This is verified by utilizing the P&W’s Gen 1
mixer-ejector test data. GEN 1 mixer-ejector, shown in Figure 47, with different liner designs
are tested at NASA Glenn anechoic freejet facility (i.e., NATR). Internal noise component
from the measured farfield acoustic data is extracted for this mixer-ejector with different
liners and at different aerothermodynamic conditions. Based on the hardwall and the treated
configurations the APWL of internal noise component is derived. Figure 48 shows the APWL
spectra for two categories of bulk absorbers with varying resistivity at a typical takeoff
condition (i.e., NPR=3.43, T8=1551°R) with flight simulation Mach number of 0.3. Clearly,
the effect of treatment variation is observed in these results.

The DC flow resistance for these bulk absorbers, measured at GEAE at room temperature, is
used to predict the normal impedance at the takeoff condition (i.e., NPR=3.43, T8=1551°R).
The grazing flow Mach number and wall temperature are assumed to be 0.6 and 500°F,
respectively. The following table lists the measured DC flow resistance at ambient
temperature and their predicted values at 500°F for various bulk absorbers:

Bulk Material Resistivity Rayls/cm a Resistivity Rayls/c

Room Temperature at 500°F
100 ppi SiC 9.88 15.17
200 ppi SiC 24.26 37.27
400 ppi SiC 53.18 81.67
HTP 3.3 50.50 68.48
HTP 4.6 59.84 91.89
HTP 4.86 92.30 141.74

Figure 49 shows the predicted normal impedance spectra at the takeoff condition for the
above listed bulk materials with a 37% porous perforated facesheet of thickness 0.025” and
with 0.07” diameter holes. The corresponding acoustic suppression spectra are predicted
using the modal analysis method for a two-sided treated rectangular ejector with uniform
flow Mach number of 0.631 and temperature of 928°R (see Figure 50), which are the mixed

flow conditions in the ejector.

The internal component of APWL based on the measured data and the corresponding
predicted acoustic suppression spectra for 100ppi SiC foam liner are shown in Figure 51.

Even though the peak acoustic suppression is higher compared to measured APWL, the peak »
frequencies are close. In general, except for the last two frequency bands, the spectral shape
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Figure 48. Internal component of APWL spectra for Gen 1 mixer-ejector with (a) SiC and (b)
HTP bulk absorber liners with 37% porous facesshhet (t=0.025” and d=0.07");
NPR=3.43, T8=1551°R, V;=2359 ft/sec, M=0.3.
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Figure 49. Predicted normal impedance with grazing flow Mach number of 0.6 and static
temperature of 500°F for (a) SiC and (b) HTP bulk absorber liners with 37%

porous facesshhet (t=0.025” and d=0.07").

NASA/CR—2006-214400 73



12

Bulk Type
©B—£3 100 ppi SiC
| ©&----O 200 ppi Sic
A——aA 400 ppi SIiC

10

ACOUSTIC SUPPRESSION, dB
0

- Bulk Type
[O—E1 HTP 33 5.1,
OO HTP 46 gl P
© |4-—4 HTP 4.86 &/
I "'F'—A'/
(b)
4 810 20 40 64

FREQUENCY, kHz

Figure 50. Predicted acoustic suppression with mixed flow Mach number of 0.63 and
temperature of 928°R , for Gen 1 mixer-gjector with (a) SiC and (b) HTP bulk
absorber liners with 37% porous facesshhet (t=0.025” and d=0.07""); NPR=3.43,

T8=1551°R, V,=2359 fi/sec, M=0.32.
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of APWL is similar to that of the acoustic suppression. It should be noted that the beginning
half of the ejector, closer to the mixer exit, was not treated.

The measured APWL and the predicted acoustic suppression for the 100 ppi SiC liner,
plotted in Figure 51, are used to compute a frequency dependent correction factor. This factor
is used to compute the APWL and thus the internal component of PWL for other bulk
absorber liner configurations. The data and the predicted PWL for various liner
configurations are shown in Figure 52. The agreement between the prediction and data is

reasonably well.

Thus, the use of the correction factor seems to be reasonable for different liner designs
for the same mixer-ejector at a given ejector flow condition. However, the validity of its
use for different mixer-ejector geometry and for different scale mixer-ejectors is not
known. The correction factor for a 1/7-scale mixer-ejector described earlier in this section is
compared with the correction factor of the 1/10-scale Gen 1 mixer-ejector in Figure 53.
Significant difference between the two correction factor spectra is observed. These
differences can not be attributed to the difference in the mixer-ejector scale factor, since

extreme design differences exist between the two models.

At this stage, utilizing the normal impedance, acoustic suppression, and farfield noise
prediction methods, a liner design methodology is developed. A computer code to predict the
noise components in the farfield with the design inputs (physical and measured acoustic
properties of the liner components) is developed. The details of the liner design methodology
computer code are described in the appendix A.
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Figure 52. Comparison of internal component of PWL for Gen 1 mixer-ejector between data
and prediction for various bulk absorber liners with 37% porous facesshhet
(t=0.025” and d=0.07"); NPR=3.43, T8=1551°R, V;=2359 ft/sec, M=0.3.
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6.0 OPTIMUM LINER DESIGNS AND SENSITIVITY STUDIES

The liner optimization process based on the optimum impedance and corresponding acoustic
suppression was presented in a coordination memo GE96-143N (Ref. 8). Various physical
(liner depth and facesheet geometry) and acoustic characteristics (DC flow resistance) are
optimized in this study. Figure 54 summarizes the variation of bulk resistivity, liner depth,
and facesheet properties with respect to linear scale factor for optimum liner designs. Similar
optimization process is repeated in this section with respect to achieving a minimum EPNdB
using the process described in section 5.0. This process would establish whether the optimum
parameters on optimum impedance basis remain the same when optimized with respect to
minimum EPNL. In this exercise the physical and acoustic properties for each design are
varied and the corresponding EPNL are calculated. In addition, the sensitivity of the design
with respect to EPNL is studied for flow and acoustic environment of the ejector. In this
study grazing flow Mach number M and temperature T, mean flow Mach number Mx,
temperature Tx, boundary layer displacement thickness 8%, and OASPL are considered.

6.1 Liner Depth (D): Figure 55 shows the normal impedance and acoustic suppression
spectra for full scale liner designs with different liner depths for a fixed bulk resistivity (10
Rayls/cm) and for the same facesheet. The acoustic suppression increases at lower
frequencies with increasing liner depth without impacting on high frequency results.
However, for liner depths above 2”, the acoustic suppression at mid frequency range seems
to be decreasing with increasing D. Figure 56 shows the PNL directivities for each of the
liner depths. Both total and internal components indicate EPNL reduction with increasing D
up to about D=2.67". Slight EPNL increase is observed for higher liner depths.

Similar results for LSM and 1/7-scale liners are shown in Figures 57 through 60. The
variation of acoustic properties with respect to the liner depth is similar to those observed for
full-scale designs. The predicted EPNL for each scale is plotted with respect to liner depth in
Figure 61. While the slopes of EPNL with respect to liner depth are drastically different, they
seem to collapse better when plotted as ratio of liner depth and linear scale factor. At higher
liner depths the EPNL variation is insignificant. The optimum liner depths, thus evaluated,
2.0”, 1.2”, and 0.485”, for full scale, LSM, and 1/7-scale, respectively, are again the same as
those obtained earlier. It should be noted that the liner depth for 1/7-scale is much higher
compared to 0.27” on the basis of its linear scale factor.

6.2 Bulk Resistivity: Keeping the optimum liner depths and facesheet properties the samé,
bulk resistivity is varied for each of the three mixer-ejector cases. Figure 62 shows predicted
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normal impedance and acoustic suppression for a full-scale mixer-ejector liner with different
bulk resistivity. The acoustic suppression increases at mid frequency range with decreasing
bulk resistivity. However, the EPNL, based on the predicted PNL directivities (see Figure
63), decreases with decreasing bulk resistivity and the trends gets reversed at very low value
of bulk resistivity. Similar results for LSM and 1/7-scale designs are shown in Figures 64
through 67. Finally, the EPNL is plotted with respect to bulk resistivity as well as with
respect to the product of bulk resistivity and linear scale factors for all three mixer-ejector
designs in Figure 68. Clearly, the minimum EPNL for different scale designs appears at
different bulk resistivity. The optimum resistivity increases with decreasing linear scale
factor. For total EPNL the scale factor proportionality of bulk resistivity is reasonably good.
A finer variation can result in a more accurate optimum bulk resistivity. However, the
optimum resistivities are kept the same (i.e., 10, 20, and 60 Rayls/cm for full scale, LSM, and
1/7-scale designs) as before (Ref. 8), since their impact on EPNL is relatively small if varied

by a small amount.

6.3 Facesheet Porosity: Keeping the optimum liner depths, bulk resistivity, and facesheet
thickness and hole diameter the same, the facesheet porosity is varied for each of the three
mixer-ejector cases. Figure 69 shows predicted normal impedance and acoustic suppression
for a full-scale mixer-ejector liner with different facesheet porosity. The acoustic suppression
increases at mid and high frequency ranges with increasing facesheet porosity. Also, the
EPNL, based on the predicted PNL directivities (see Figure 70), decreases with increasing
facesheet porosity. Similar results for a thicker facesheet (t=0.1"") with larger hole diameter
(d=0.1") are also evaluated and presented in Figures 71 and 72. The acoustic characteristics
are similar to what is observed for thinner facesheets with smaller hole diameter. The EPNL
for these two sets of facesheets is plotted with respect to facesheet porosity in Figure 73.
EPNL for both the sets of facesheets decreases with increasing porosity. However, the levels
for the thicker facesheets are higher compared to the thinner facesheets. This is due to the

increased mass reactance of the thicker facesheets at higher frequencies.

Similar results for LSM and 1/7-scale designs are shown in Figures 74 through 77. Again, the
EPNL decreases monotonically with increasing facesheet porosity for mixer-ejectors of all
three scales. Finally, the EPNL is plotted with respect to facesheet porosity for all three
mixer-ejector designs in Figure 78. Clearly, the minimum EPNL for all three scale designs
monotonically decreases with increasing facesheet porosity. The rate of EPNL decrease
reduces at higher porosities. With this trend there is no scaling requirements to set the
optimum porosity. A very high value of facesheet porosity is desirable for each case.

NASA/CR—2006-214400 89



105

a) Total
2 @
8
Q "~ Bulk Resistivity
J 8 Rayls/cm EPNdB
a %—% Hardwall 101.82
o230 9724
(Yol
® G—020 97.08 51248 in?, 1629 Sideline
A—A10 9683  77°F 70% RH SAE STD Day
-0 5  96.94 |
o |
8
- D=2.0", t=0.04", d=0.04", 5=40%,
OASPL=180 dB, T=500°F, M=0.8,
. . Tx=530°F, Mx=0.85
S 1 1
N (b) Internal Component
‘g S il
_‘,"} 3 R
m ;;',/-9 =2 \
5 8 2 1
< = | Bulk Resistivity
Z Rayis/cm EPNdB
2 %— Hardwall 98.72
G030  91.60
o020 - 91.31
8 &a—a10  90.86
o0 5 91.02
L
40 50 60 70 8 9 100 110 120 130 140 150 160

POLAR ANGLE, DEGREE
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Figure 76. Effect of facesheet porosity () on predicted normal impedance and acoustic
suppression spectra for a liner design for NRA model with mixer 8, D=0.485"
t=0.015", d=0.02”, R=60 Rayls/cm, T=500°F, M=0.8, OASPL=171.5 dB (takeoff).

NASA/CR—2006-214400 103



PNL, dB

PNL,dB

105

i (a)
8
|
/ B e TN
7 o
w0 g
? 2 Porosity Total EPNGB
=< @—@ Hardwall 101.82
= m—8 20% 9754
- o 25% 9720
> a—a 30% 9697
o-—© 35% 96.80
~—2 40% 9670
X—X 45%  96.68
8 —T T T - .
g . v -
T | As-1248 i 16297 Sideline D=0485" 1=0015", ¢=0,02", R=60
8 ” |7 o /"/q IT{a:Ssdoscl)%%ﬁfo.s, Tx=530°F, Mx=0.85
e N .
2 (b)
I == =
8 g "“\\;
Porosity Intemal EPNdB
@—@ Hardwall 98.72
S o—8 20% 91.88 ]
o0 25% 9122
a—s 30% 9074
= oo 35% 9031 —
~—2 40% 90.10
0 XX _45% 9007
T4 5 60 70 8 9 100 110 120 130 140 i 160

POLAR ANGLE, DEGREE

Figure 77. Effect of facesheet porosity (o) on predicted (a) total and (b) internal component
of PNL directivities for a liner design for NRA model with mixer 8, NPR=3.43,
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However, some variation is applied in this design from practical considerations. For a lower
scale liner very thin facesheet is most desirable to control the liner reactance at higher
frequencies. However, very thin facesheets are difficult to manufacture and are structurally
undesirable. Thus, porosities of 45%, 40%, and 40% are set for 1/7-scale, LSM, and full-

scale mixer-ejectors, respectively.

6.4 Facesheet Thickness: Keeping the optimum liner depths, bulk resistivity, and facesheet
porosity and hole diameter the same, the facesheet thickness is varied for each of the three
mixer-ejector cases. Figure 79 shows predicted normal impedance and acoustic suppression
for a full-scale mixer-ejector liner with different facesheet thickness. Reactance increases
with increasing thickness, especially at higher frequencies. The impact of thickness seems to
be small on acoustic suppression as well as on EPNL for full-scale liners. In general, EPNL
decreases first with increasing facesheet thickness and then increases with further thickness
increase as listed in the PNL directivity plots (see Figure 80). Similar results for facesheets
with larger hole diameter (d=0.1") are also evaluated and presented in Figures 81 and 82. The
acoustic characteristics are similar to what is observed for facesheets with smaller hole
diameter. The EPNL for these two sets of facesheets is plotted with respect to facesheet
thickness in Figure 83. EPNL for both the sets of facesheets decreases first and then
increases with increasing facesheet thickness. However, the levels for the facesheets with
larger hole diameter are higher compared to the facesheets with smaller hole diameter. This
is due to the increased resistance for facesheets with higher hole diameters.

Similar results for LSM and 1/7-scale designs are shown in Figures 84 through 87.
Reactance increases with increasing thickness, especially at higher frequencies. The impact
of thickness seems to be higher for lower scale mixer-ejectors. For LSM the acoustic
suppression increases first and then decreases with increasing facesheet thickness. However,
for 1/7-scale liners the acoustic suppression decreases with increasing facesheet thickness.
Finally, the EPNL is plotted with respect to facesheet thickness as well as with respect to the
ratio of facesheet thickness and linear scale factors for all three mixer-ejector designs in
Figure 88. Clearly, the minimum EPNL for all three scale designs decreases first and then
increases with increasing facesheet thickness. The minimum EPNL for all three cases come
closer when plotted with respect to the ratio of facesheet thickness and linear scale factor.
Facesheet thicknesses of 0.015”, 0.04”, and 0.04 give the minimum EPNL for 1/7-scale,
LSM, and full-scale mixer-ejectors, respectively, in the current exercise. However, the
optimum facesheet thickness on the basis of normal impedance, manufacturability, and
durability are chosen to be 0.015”, 0.02”, and 0.04” for 1/7-scale, LSM, and full-scale mixer-

ejectors, respectively.
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Figure 79. Effect of facesheet thickness (t) on predicted normal impedance and acoustic
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Figure 85. Effect of facesheet thickness (t) on predicted (a) total and (b) internal component
of PNL directivities for an LSM mixer-ejector liner design, NPR=3.43,
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6.5 Facesheet Hole Diameter: Keeping the optimum liner depths, bulk resistivity, and
facesheet porosity and thickness the same, the facesheet hole diameter is varied for each of
the three mixer-ejector cases. Figure 89 shows predicted normal impedance and acoustic
suppression for a full-scale mixer-ejector liner with different facesheet hole diameters.
Resistance increases with increasing facesheet hole diameter at all frequencies. The impact of
hole diameter seems to be small on acoustic suppression as well as on EPNL for full-scale
liners. In general, EPNL increases first with increasing facesheet hole diameter as listed in
the PNL directivity plots (see Figure 90). Similar results for thicker facesheets (t=0.1") are
also evaluated and presented in Figures 91 and 92. The acoustic characteristics are similar to
what is observed for facesheets of thickness 0.04”. The EPNL for these two sets of facesheets
is plotted with respect to facesheet hole diameter in Figure 93. EPNL for both the sets of
facesheets decreases slightly and then increases with increasing facesheet hole diameter.
However, the levels for the thicker facesheets are higher compared to the thinner facesheets.
This is due to the increased reactance for thicker facesheets at higher frequencies.

Similar results for LSM and 1/7-scale designs are shown in Figures 94 through 97.
Resistance increases with increasing facesheet hole diameter at all frequencies. The impact of
hole diameter seems to be higher for lower scale mixer-ejectors. For LSM the impact of
facesheet hole diameter is relatively small on acoustic suppression. However, for 1/7-scale
liners the acoustic suppression decreases with increasing facesheet hole diameter. Finally, the
EPNL is plotted with respect to facesheet hole diameter for all three mixer-ejector designs in
Figure 98. Clearly, the EPNL for all three scale designs decreases slightly at the beginning
and then increases with increasing facesheet hole diameter, except for 1/7-scale. Apparently,
the impact of hole diameter on EPNL is independent of linear scale factor. Facesheet hole
diameters of 0.01”, 0.04”, and 0.04 give the minimum EPNL for 1/7-scale, LSM, and full-
scale mixer-ejectors, respectively, in the current exercise. However, the optimum facesheet
hole diameters on the basis of normal impedance are chosen to be 0.02”, 0.025”, 0.04” for
1/7-scale, LSM, and full-scale mixer-ejectors, respectively. For LSM d=0.04" is used for
subsequent designs, since this yields a minimum EPNL and more suitable for manufacturing.

Based on the parametric results presented in this section some of the liner parameters depend
on the linear scale factor of the mixer-ejector. While the depth of the liner is directly
proportional to the mixer-ejector linear scale factor the bulk resistivity is inversely
proportional to this factor. A very weak dependency exists between the facesheet thickness
and linear scale factor, that the thickness directly varies with this factor. Parameters like
facesheet porosity and hole diameters are independent of linear scale factor.
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6.6 Sensitivity Studies: In this section the effect of grazing and mean flow parameters, and
acoustic intensity of the ejector on the farfield noise is evaluated. In each case, the same
physical design of a full-scale liner is used and the ejector flow and acoustic parameters are
varied, one at a time, by keeping the other environmental parameters the same. The objective
of this study is to evaluate the degree of inaccuracies incurred in the predicted noise field due
to any possible error or approximation made for the flow and acoustic input parameters.

Grazing Flow Mach Number (M): Effect of grazing flow Mach number on predicted
normal impedance and acoustic suppression spectra are shown in Figure 99. Resistance
increases with increasing grazing flow Mach number. However the impact of M on acoustic
suppression seems to be small. Grazing flow Mach number impact on PNL directivities and
the corresponding EPNL, shown in Figure 100, seems to be insignificant. However, the
effect is significant for liners of smaller scale factors. It is expected to be important for the
liners with relatively higher resistance levels at critical frequencies, even for full-scale. For
these cases, the EPNL would increase significantly with increasing grazing flow Mach

number.

Grazing Flow Temperature (T): In this study the bulk resistivity used for normal
impedance prediction is varied corresponding to the grazing flow temperature, since the bulk
resistivity increases with temperature (R=R,mp { lamb/1}, p being the coefficient of viscosity).
Effect of grazing flow temperature on predicted normal impedance and acoustic suppression
spectra are shown in Figure 101. Resistance increases and reactance decreases with
increasing grazing flow temperature. Acoustic suppression decreases with increasing
temperature at lower frequencies. The effect is insignificant at higher frequencies. Grazing
flow temperature impact on PNL directivities and the corresponding EPNL is shown in
Figure 102. EPNL increases with increasing grazing flow temperature.

Acoustic Intensity (OASPL): Effect of acoustic intensity in terms of OASPL on predicted
normal impedance and acoustic suppression spectra are shown in Figure 103. Resistance
increases with increasing acoustic intensity. Acoustic suppression decreases with increasing
OASPL at frequencies above 600 Hz. Acoustic intensity impact on PNL directivities and the
corresponding EPNL is shown in Figure 104. EPNL increases with increasing acoustic
intensity (OASPL).

Boundary Layer Displacement Thickness (6*): Effect of boundary layer displacement
thickness (&%) on predicted normal impedance and acoustic suppression spectra are shown in
Figure 105. Resistance increases and then decreases with increasing &*. Acoustic suppression
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component of PNL directivities for a full-scale mixer-ejector liner design,

NPR=3.43, T8=1551°R, V;=2359 ft/sec, M=0.32 {takeoff}.
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decreases and then increases with increasing 6* at mid frequencies. Acoustic intensity impact
on PNL directivities and the corresponding EPNL is small as indicated in Figure 106.

Mean Flow Mach Number (Mx): Effect of mean flow Mach number on predicted acoustic
suppression spectra and PNL directivities are shown in Figure 107. Acoustic suppression
increases and the corresponding EPNL decreases with increasing mean flow Mach number.

Mean Flow Temperature (Tx): Effect of mean flow temperature on predicted acoustic
suppression spectra and corresponding PNL directivities are shown in Figure 108. The
impact of Tx is insignificant on acoustic suppression and the corresponding EPNL.
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7.0 LINER DESIGN AND FARFIELD NOISE PREDICTION

Liners are designed for different realistic materials for each of the full-scale, LSM, and 1/7-
scale mixer-ejectors. In addition, an ideal liner is designed for full-scale ejector, for which
the impedance levels are chosen to give maximum acoustic suppression. It should be noted
that this is a hypothetical design not realistically possible. The nozzle and liner parameters
utilized in these designs are listed in section 2. All the liner designs are done for takeoff
conditions. However, the acoustic characteristics are also evaluated at cutback conditions for
the same liner designs. Predicted normal impedance, acoustic suppression, and farfield noise
for the realistic liners, the optimum liner (established in section 6), and the ideal liner are

compared for each mixer-ejector scales.

7.1 Normal Impedance and Acoustic Suppression for Ideal Liner: Acoustic suppression
spectrum for different fixed impedance values, covering the optimum impedance range (i.e.,
R/pc=1.5 to 2.0 and X/pc=-0.5 to 0.0), are computed for the full-scale mixer-ejector at the
takeoff condition. Acoustic suppression results at fixed resistance with varying reactance are
shown in Figures 109 and 110. Similar results at fixed reactance with varying resistance are
shown in Figures 111 and 112. The effect of reactance on acoustic suppression, as observed
from Figures 109 and 110, for a fixed resistance is very small. Whereas, for a fixed reactance
the acoustic suppression increases with decreasing resistance up to about 2500 Hz (see
Figures 111 and 112). The trend is reversed at higher frequencies. Based on this behavior, for
a fixed reactance of -0.5 the resistance values are further decreased beyond the optimum limit
and the corresponding acoustic suppression spectra (see Figure 113) are evaluated. Acoustic
suppression increases with decreasing resistance at frequencies closer to the peak up to R/pc
=0.6. The suppression level starts decreasing for entire frequency range with further
resistance decrease. Utilizing all the predicted acoustic suppression, ideal impedance spectra,

corresponding to maximum possible suppressions, are established.

7.2 Full-Scale Mixer-Ejector: Normal impedance spectra for an optimum design and two
other realistic designs, parameters listed below, are predicted at takeoff condition.

Optimum Design #1 Design #2
Liner Depth, D 2.0” 2.0” 2.0”
Bulk Resistivity, Rayls/cm 10.0 37.3 (T-Foam) 8.45 (100ppi SiC)
Facesheet Thickness, t 0.04” 0.10” 0.10”
Facesheet Hole Diameter,d  0.04” 0.04” 0.04”
Facesheet Porosity, o 40% 35% 35%
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Figure 109. Effect of _normal reactance (X/pc) on acoustic suppression spectra for fixed
normal resistance (R/pc) for full-scale mixer-ejector, Mx=85, Tx=530°F.
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Figure 110. Effect of normal reactance (X/pc) on acoustic suppression spectra for fixed
' normal resistance (R/pc) for full-scale mixer-ejector, Mx=85, Tx=530°F.
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Figure 111. Effect of normal resistance (R/pc) on acoustic suppression spectra for fixed
normal reactance (X/pc) for full-scale mixer-ejector, Mx=85, Tx=530°F.
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Figure 112. Effect of normal resistance (R/pc) on acoustic suppression spectra for fixed
normal reactance (X/pc) for full-scale mixer-ejector, Mx=85, Tx=530°F.
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Figure 113. Acoustic suppression spectra for fixed normal impedance for full-scale mixer-
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The optimum design is aimed at achieving the optimum impedance at and around the peak
noy frequency and thus a minimum EPNL for takeoff could be obtained. The realistic
designs are based on the current liner parameters established due to material, manufacturing,
and strength considerations. Figure 114 shows the spectral distribution of normal impedance
for the ideal, optimum, and the two realistic liner designs. Based on the normal impedance
spectra a physical design of the ideal liner is not possible. The design #2 impedance spectra
are very close to the optimum design. However, the normal resistance for the design #1 with
T-Foam is much higher at frequencies up to about 3 kHz. Acoustic suppression spectrum for
each design is predicted for takeoff as well as cutback conditions and is shown in Figures 115
and 116, respectively. The ideal acoustic suppression is much higher compared to the other
liner designs at frequencies up to about 4 kHz. The acoustic suppression for the liner design
with SiC foam (i.e., Design #2) is very close to the optimum case, where as, the acoustic
suppression is much lower for Design #1 at frequencies between 500 to 2500 Hz. The total
and internal component of PNL directivities for these liner designs and hardwall
configuration are shown in Figure 117. The total and internal component of EPNL is listed in

this figure.

The impact of bulk resistivity on EPNL is about 0.4 dB for takeoff and 0.94 dB at
cutback, which is very significant. A suitable bulk is, therefore, very important for the

successful liner application.

7.3 LSM Mixer-Ejector: The normal impedance spectra for an optimum design and two
other realistic designs, parameters listed below, are predicted at takeoff condition.

Optimum Design #1 Design #2
Liner Depth, D 1.2 1.2” 1.2”
Bulk Resistivity, Rayls/cm 20.0 33.8 (T-Foam) 20.0
Facesheet Thickness, t 0.02” 0.04” 0.04”
Facesheet Hole Diameter,d  0.025” 0.054” 0.054”
Facesheet Porosity, ¢ 40% 37% 37%

Figure 118 shows the spectral distribution of normal impedance for the optimum and the two
realistic liner designs. The reactance spectra for all three designs are very close to each other.
The design #2 normal resistance spectrum is closer to the optimum design. However, the
normal resistance for the design #1 with T-Foam is much higher at frequencies up to about 4
kHz. Design #2 could be achieved by using materials of about 20 Rayls/cm, a SiC foam of
about 150ppi. Acoustic suppression spectrum for each design is predicted for takeoff as well
as cutback conditions and is shown in Figure 119. Again, the acoustic suppression for the
liner design #2 is closer to the optimum case, where as, the acoustic suppression is
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Figure 114. Comparison of predicted normal impedance spectra between ideal, optimum, and
two realistic liner designs for full-scale mixer-ejector at takeoff condition, D=2",
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Figure 115. Comparison of predicted acoustic suppression spectra between ideal, optimum,
and two realistic liner designs for full-scale mixer-ejector at takeoff condition
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Figure 116. Comparison of predicted acoustic suppression spectra between ideal, optimum,
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Figure 119. Comparison of predicted acoustic suppression spectra between optimum and two
realistic liner designs for LSM mixer-ejector, D=1.2”, d=0.04".
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significantly lower for Design #1 at frequencies between 1000 to 2500 Hz. The
corresponding PNL directivities are plotted in Figure 120. The impact of bulk resistivity on
EPNL is small at takeoff. But is significant (i.e., 0.51 dB) at cutback. Thus, a suitable bulk
is necessary to improve the acoustic suppression.

7.4 1/7-Scale Mixer-Ejector: The optimum bulk liner design for 1/7-scale mixer-ejector was
carried out for a grazing flow Mach number M=0.6 with OASPL=177 dB, presented in
Coordination Memo GE96-143N (Ref. 8). However, the current design is being performed
for a grazing flow Mach number M=0.8 with OASPL=171.5 dB. Thus, the optimum design
is repeated by varying the bulk resistivity for the same facesheet parameters in section 6. A
resistivity of 60 Rayls/cm is still gives the minimum EPNL with optimum facesheet.
However, with the realistic facesheet design a relatively lower bulk resistivity (i.e., about 40
Rayls/cm) is required for minimum EPNL. A liner depth of 0.485” is used for optimum as
well as two other designs. However, a liner depth of 0.27” seems to be the required depth if
the linear scale factor is applied with respect to full-scale design (i.e., 2.0”). Thus, a third
design is made similar to the design #1 with a depth of 0.27” for comparison purpose. The
normal impedance spectra for the optimum and the three other realistic designs, parameters
listed below, are predicted at takeoff condition.

Optimum  Design #1 Design #2 Design #3
Liner Depth, D 0.485” 0.485” 0.485” 0.27”
Bulk Resistivity, Rayls/cm  60.0 8.45 (100ppi SiC) 40.0 8.45 (100ppi SiC)
Facesheet Thickness, t 0.015” 0.025” 0.025” 0.025”
Facesheet Hole Diameter,d 0.02” 0.045” 0.045” 0.045”
Facesheet Porosity, S 45% 37% 37% 37%

Figure 121 shows the spectral distribution of normal impedance for the optimum and the
three realistic liner designs. The reactance spectra for three designs of same depth are very
close to each other, except at frequencies above 10 kHz. However, for D=0.27" (Design #3),
the reactance spectrum is considerably different. The design #2 normal resistance spectrum is
slightly higher compared to the optimum design. However, the normal resistance for the
designs #1 and #3 with 100ppi SiC is much higher at frequencies below 1 kHz and much
lower at mid frequency range. Design #2 could be achieved by using materials of about 40
Rayls/cm, a SiC foam of 200ppi (Resistivity 35.3 Rayls/cm) or a SiC foam with slightly
higher ppi. The resistivity of 12 Ibs/cft T-Foam for 0.5” deep sample is much lower (18
Rayls/cm), even though, the resistivity for 2” deep sample is closer to the optimum (37.3
Rayls/cm). Acoustic suppression spectrum for each design is predicted for takeoff as well as
cutback conditions and is shown in Figure 122. Again, the acoustic suppression for the liner
design #2 is closer to the optimum case, where as, the acoustic suppression for Design #1 is
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between optimum and two realistic liner designs for LSM mixer-ejector at
takeoff condition, NPR=3.43, T8=1551°R, V;=2359 ft/sec, M=0.32.
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Figure 121. Comparison of predicted normal impedance spectra between optimum and three
realistic liner designs for 1/7-scale mixer-gjector at takeoff condition, T=500°F,

M=0.8, OASPL=171 dB.
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Comparison of predicted acoustic suppression spectra between optimum and
three realistic liner designs for 1/7-scale mixer-ejector.
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higher at frequencies between 5 and 7 kHz, but significantly lower at a number of higher
frequency regions. Acoustic Suppression for design #3 is much lower at frequencies below 6

kHz.

PNL directivities for hardwall and the four liner designs are plotted in Figure 123. The EPNL
values are listed in this figure. Acoustic benefit of about 0.7 EPNdB at takeoff (about 0.9
EPNdB at cutback) is shown due to the bulk resistivity. A higher resistive bulk is more noise
effective for smaller scale ejector. It should be noted that the reduction of liner depth from
0.485” to 0.27” resulted in an increase of 0.56 EPNdB at takeoff (and 1.36 EPNdB at

cutback).
7.5 Comparison of 1/7-Scale, LSM, and Full-Scale Liner Characteristics:

Optimum Liner Designs: Figure 124 shows the normal impedance spectra with respect to the
frequency, multiplied with linear scale factor, (i.e., normalized frequency) for the optimum
liners of three different scales. In the ideal case the impedance spectra for all three cases
would collapse. However, the liner depth and other physical properties are not exactly scaled
to the corresponding scale factor. If the depth for LSM and 1/7-scale liners would be set at
1.13” and 0.27” corresponding to their scale factors of 0.565 and 0.136, the impedance peaks
would have come together at a fixed normalized frequency. However, the design depth for
1/7-scale liner is chosen to be 0.485”, which is much higher compared to 0.27”, for better
acoustic suppression. The corresponding acoustic suppression spectra for takeoff and cutback
conditions are shown in Figure 125. Again, the 1/7-scale acoustic suppression peak is
occurring at a lower frequency compared to LSM and full-scale models due to its higher

depth.

Design #1 Liners: Figure 126 shows the normal impedance spectra with respect to the
frequency, multiplied with linear scale factor, (i.e., normalized frequency) for the full-scale
optimum liner and the three different scale liner designs. For 1/7-scale designs 0.27” deep
liner results (design #3) are also included. The resistance spectra for LSM and full-scale
liners are significantly higher compared to the optimum spectrum. The correspoﬂding
acoustic suppression spectra for takeoff and cutback conditions are shown in Figure 127.
Again, the acoustic suppression levels for LSM and full-scale liners are much lower
compared to the optimum at frequencies closer to the peaks. The suppression peak for 0.27”
deep liner coincides with those of other scale results. The corresponding 0.485” deep liner

exhibits more low frequency suppression compared to other liners.
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Alternate Design #2 Liners: Figure 128 shows the normal impedance spectra for takeoff
condition with respect to the frequency, multiplied with linear scale factor, (i.e., normalized
frequency) for the full-scale optimum liner and the three alternate different scale liner
designs. The resistance spectra for all three liners are very close to the optimum spectrum.
The reactance spectrum for LSM and full-scale liners are close to the optimum spectrum. The
1/7-scale (termed as NRA with mixer 8) liner being deeper compared to its scale factor, the
reactance spectrum is considerably shifted to the lower frequency compared to the optimum.
The corresponding acoustic suppression spectra for takeoff and cutback conditions are shown
in Figure 129. The acoustic suppression levels for LSM and full-scale liners are much closer
to the optimum. The 1/7-scale acoustic suppression spectrum is shifted to the lower
frequency compared to the optimum due to its depth not proportional to its scale factor.

The reasonable agreement of acoustic suppression and EPNL for all three mixer-ejectors
with the optimum levels for the alternate liner designs is due to the appropriate bulk
resistivity. Thus, it is important to seek suitable bulk materials for efficient liner designs

The predicted EPNL using the process described in section 5 for all the liner designs
covering all three scales for takeoff and cutback conditions are listed in Table 1. Compared to
the current liner design for 1/7-scale NRA model, tested in Cell 41, acoustic benefits of about
0.6 and 0.9 EPNdB are shown to be achievable at takeoff and cutback conditions for
improved liner designs. It should be noted that the 1/7-scale liner depth is not proportional to
its linear scale factor. Considering appropriate depth for 1/7-scale liner (i.e., 0.27”) acoustic
benefits of about 1.2 and 1.9 EPNdB are shown to be achievable at takeoff and cutback

conditions.

7.6 Advantages of EPNL Prediction Process: The internal component of noise extraction
process is based on Stone’s noise prediction model (Ref. 5). This model is developed
utilizing measured farfield acoustic data for a number of mixer-ejector configurations with
different geometric and aerothermodynamic parameters. Thus, the internal noise component
extracted by this method seems to be realistic.

The utilization of acoustic transfer factor to construct APWL from predicted acoustic
suppression minimizes uncertainties associated with acoustic suppression prediction, internal
noise extraction process, and azimuthal variation of farfield noise. If such a factor is not used,
instead the predicted acoustic suppression is assumed to be the APWL for a liner design, the
predicted EPNL would be much different from the results shown here and will depend on the
number of modes and the assumptions utilized in the acoustic suppression prediction. As
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Figure 129. Comparison of predicted acoustic suppression with respect to normalized
frequency between alternate liner designs for 1/7 scale, LSM, and full-scale, and
optimum liner design for full-scale mixer-jectors.
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examples, PNL directivities and corresponding EPNL for three mixer-ejectors of different
linear scale factor (i.e., full scale, LSM, and 1/7-scale) with one liner design for each are
computed with and without utilizing the acoustic suppression transfer factor and are shown in
Figures 130 through 132. For the current study, which utilizes 50 transverse modes with
equal energy per mode type assumption, the farfield noise goes down significantly when the
transfer factor is not used. Thus, acoustic benefit of about 1 EPNdB is observed for each

configuration.

This aspect is further demonstrated with respect to the utilization of different number of
modes contributing to the acoustic suppression prediction. Figure 133 shows the acoustic
suppression spectra for different number of transverse modes used in the prediction. As
expected, more acoustic suppression, especially at higher frequency range, is predicted with
more number of modes. The PNL directivities and corresponding EPNL are computed for
each of the acoustic suppression spectra of Figure 133 without using the transfer factor. The
results are shown in Figures 134 and 135. Clearly, the EPNL reduces with increasing number
of modes being used in acoustic suppression prediction. Thus, the use of acoustic suppression
transfer factor is a better way to assess relative acoustic benefits of liner designs.
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Figure 134. Predicted (a) total and (b) internal component of PNL directivities due to different
number of transverse modes for the alternate liner design for LSM mixer-ejector
at takeoff condition using unity acoustic suppression transfer factor, NPR=3.43,

T8=1551°R, V;=2359 ft/sec, M=0.32.
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8.0 CONCLUDING REMARKS

Possible Inaccuracies and their Remedies: We have developed a process to predict noise
field interior to the ejector and in the farfield for any liner design for a mixer-ejector of
arbitrary scale factor. However, a number of assumptions, not verified for the current
application, utilized in this process, introduce uncertainties in the final result, especially, on a

quantitative basis.

The normal impedance model for bulk with perforated facesheet is based on homogeneous
foam materials of low resistivity. The impact of flow conditions for HSCT application as
well as the impact of perforated facesheet on predicted impedance is not properly accounted.
Based on the measured normal impedance for deeper bulk samples (i.e., 2.0”) the predicted
reactance is much higher compared to the data at frequencies above 2 kHz for T-foam and
200 ppi SiC. The resistance is under predicted at lower frequencies (below 4 kHz) for these
samples. Thus, the use of such predicted data in acoustic suppression is likely to introduce
inaccuracies. It should be noted that the impedance prediction methods developed recently
under liner technology program are not utilized in the studies described in this report due to

the program closeout.

Acoustic suppression prediction is based on the uniform flow and temperature conditions in a
two-sided treated constant area rectangular duct. In addition, assumptions of equal energy per
mode noise field and interaction of all frequencies with the treated surface for the entire
ejector length may not be accurate. While, the use of acoustic transfer factor minimizes the
inaccuracies associated with the prediction for a known test case, the assumption of the same
factor for other liner designs and with different linear scale factor ejectors seems to be very
" optimistic. As illustrated in appendix D that the predicted noise suppression for LSM-1 is
lower compared to the measured data is an indication of the above argument. However, the
process seems to be more reliable when used for the same scale models for different liner

designs as demonstrated for Gen. 1 mixer-ejectors.

Thus, it is premature to conclude the current results as the final acoustic benefits of the
liner designs. These results should be utilized to evaluate relative merits of a design in a
qualitative basis. The quantitative evaluation should be made on the basis of more realistic
validated prediction models, which are currently being completed under the liner
technology program. In addition, LSM-1 test results would have resolved the scaling
issues, that, whether the relative EPNL evaluation from 1/7-scale data to LSM or full-scale
is appropriate. However, due to a number of discrepancies in LSM-1 tests, not compatible
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with the 1/7-scale model tests, prevents resolving the scaling issues. Proposed LSM-2 tests,
when conducted, would help to resolve the issues not currently being answered.

Following steps are needed to improve the liner design methodology:

e Normal impedance modeling and correlation between acoustic suppression with normal
impedance utilizing measured data, acquired under HSR and CPC programs, need to be

utilized in the design methodology process.

e The current modal analysis assumes the interaction of all frequencies with the treated
flaps for their entire length. However, an axial source distribution inside the ejector may
be a more realistic assumption for acoustic suppression prediction. Interaction of noise
field with the length of the treated flaps will be assumed to be longer for higher frequency

noise compared to those of lower frequencies.

e The assumption of equivalent flap length to account for the sidewall treatment effect may
not be a true representation of the four-sided treated ejectors. Results presented in
reference 3 for 1/7-scale model tests with flap only and sidewall only treatments indicate

that the above assumption may be realistic.

e Proposed LSM Build-2 needs to be tested to obtain better understanding of the liner
scaling. This is a very important aspect for full-scale liner designs

The internal component of EPNL for different liner designs, as listed in Table 1, are
significant compared to the external component. In fact, for cutback, the internal component
of EPNL is higher compared to the external component. Thus, we have to find ways to
reduce the internal noise component substantially to eliminate its impact on total EPNL. The
internal noise component for different liner designs can be predicted more accurately using
more accurate prediction methods as described above. These predictions may result in a
lower level of internal noise component for a liner design compared to the current values.
This will be reflected in terms of a lower EPNL. However, we need to redesign the liners
with more innovative concepts, if the accurately predicted internal noise levels do not show
much acoustic benefits. All these efforts are possible when the HSCT program will begin

again in the near future.
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" APPENDIX A
EPNLPROCESS - LINER DESIGN METHODOLOGY COMPUTER CODE

Liner design methodology consists of a physical design of a liner and prediction of noise in
the farfield for a mixer-ejector treated with the liner. Physical design of a liner requires
dimensions (depth D, Facesheet Properties: Thickness t, Porosity o, and Hole Diameter d)
and measurable acoustic properties (Resistivity of the bulk, DC flow resistance parameters
for linear facesheet) of liner components. Noise prediction includes the prediction of normal
impedance, acoustic suppression in the ejector, and farfield noise utilizing the predicted
acoustic suppression and extracted farfield noise components from measured hardwall and
treated mixer-ejector configurations. In summary following input parameters are required for

noise prediction;

U Normal Impedance Prediction

e o

Liner Depth
Bulk Resistivity
Facesheet Parameters
¢ Porosity, Thickness, and Hole Diameter for
perforated facesheet
e DC flow resistance for linear facesheet
Grazing Flow Mach Number
Static Pressure & Temperature
Boundary-layer Parameters
Dynamic Pressure

° Acoustic Suppression Prediction using Modal Analysis

Liner Normal Impedance
Ejector Dimensions

e Equivalent Treatment Length

e Ejector Width

o Average Ejector Height
Average Ejector Flow Mach Number
Average Ejector Pressure & Temperature
Boundary-layer Parameters
Number of Transverse Modes

o Farfield Noise Prediction

NASA/CR—2006-214400

Acoustic Suppression

Flight Velocity

Internal Noise Data for Hardwall Reference Case
Internal Noise Data for Treated Reference Case
External Noise Data for Treated Reference Case
Frequency Factor y(f)

177



A.1 Definition of Input Parameters: Detail steps for each operation is described in various
sections of this report. Utilizing these steps a computer code, named EPNLPRCESS is
developed. The main program calls various subroutines to predict normal impedance,
acoustic suppression, and acoustic parameters, like, PWL, OASPL, PNL, EPNL, etc. The
input is fed to the main program using a namelist format file. The definition of the inputs is

included in the source program and is listed below;
Main Program Title: EPNLPROCESS

Main Program Purpose:

CALCULATES NORMAL IMPEDANCE OF LINER

COMPUTES ACOUSTIC SUPPRESSION SPECTRUM IN THE EJECTOR

CALCULATES INTERNAL, EXTERNAL,AND TOTAL NOISE COMPONENT FOR THE
COMPUTED ACOUSTIC SUPPRESSION SPECTRA

CALCULATES PNL, PNLT, OASPL, AND EPNL FOR INTERNAL, EXTERNAL, AND
TOTAL NOISE COMPONENTS

General Input Description:
A FILE CONTAINING THE FOLLOWING:

THE MAIN $EPROC CONTROL NAMELIST PROVIDING RUN OPTIONS,
PARAMETERS, AND DATA INPUT & OUTPUT FILENAMES.
THIS MUST BE THE FIRST NAMELIST IN THE FILE.

A NAMELIST TO RUN THE SELECTED IMPEDANCE PREDICTION (IF NOT
USING AN IMPEDANCE INPUT FILE). EACH IMPEDANCE PREDICTION
ROUTINE HAS A RELATED NAMELIST USED TO PROVIDE DATA AND OPTIONS.

A $ILOSS NAMELIST TO RUN THE INSERTION LOSS (SUPPRESSION)

PREDICTION.
THIS MUST BE THE LAST NAMELIST IN THE FILE.

SEE THE NAMELIST DEFINITIONS IN THE PROGRAM FOR DETAILS.

General Output Description:

A NEW TREATED CONFIG OUTPUT FILE CONTAINING:
INTERNAL SPL & PWL DATA
TOTAL SPL & PWL DATA
SUMMARY DATA FOR OASPL, PNL, PNLT, & EPNL

If INDX = 0, A HARDWALL REFERENCE OUTPUT FILE CONTAINING:
SUMMARY DATA FOR OASPL, PNL, PNLT, & EPNL

(e eIeRNe RN e BN oo BN e BN NN o NN o o NN N e BN O Ne B o BN O RO N e B e B O N e B B B B N Bt o o o N N e o N o D e B I 0]

C _________________________________________________________________________
C Namelist $EPROC definitions:

C

C ITEST = 0 : TEST CASE, 1 : DESIGN CASE

C IPRINT = DIAGNOSTIC OUTPUT FLAG: 0 = NO, 1 = YES

C NANG = NUMBER OF ANGLES IN THE INPUT DATA FILES.
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NFREQ = NUMBER OF FREQUENCIES IN THE INPUT DATA FILES -
Starting at 50Hz.

DIST = SIDELINE DISTANCE OF INPUT DATA, FT.
FLTVEL = A/C FLIGHT VELOCITY, FPS. FOR EPNL CALCULATIONS.
ICON = CONFIGURATION IDENTIFIER.
HWREFINT = INTERNAL SPL & PWL FILE FOR REFERENCE HARDWALL CONFIG
(INPUT)
TRTREFINT = INTERNAL SPL & PWL FILE FOR REFERENCE TREATED CONFIG
(INPUT)
TRTREFEXT = EXTERNAL SPL & PWL FILE FOR REFERENCE TREATED CONFIG
{ INPUT)
REFILSCOEFF = DELTAPWL/ILS COEFFICIENTS FILE FOR REFERENCE CONFIGS
(INPUT)
PPANEL = PANEL TYPE FOR IMPEDANCE PREDICTION:

'SDOF_WM' - SDOF WITH WIRE MESH FACE SHEET
'SDOF_PP' - SDIF WITH PERFORATED PLATE FACE SHEET

' BULK ' - BULK ABSORBER WITHOUT A FACE SHEET
'"BULK_WM' - BULK ABSORBER WITH WIRE MESH FACE SHEET
'BULK_PP' - BULK ABSORBER WITH PERFORATED PLATE

FACE SHEET
'‘AABULK ' - PREDICT IMPEDANCE USING RICE ROUTINE.
NOTES: Each PPANEL type/method uses a namelist with the same name

.(eg: $SDOF_WM) to provide data and panel options for the
selected impedance prediction. These namelists are in
the same control file (code 20) as the $EPROC namelist.

You MUST leave PPANEL blank if using a file (IMPDFL) to

input the impedance values for the suppression calculation.

TPSFRQ TREATMENT PANEL (PPANEL) 1/3 OB STARTING FREQUENCY, Hz

INDX = FLAG FOR INPUT OF HARDWALL CONFIGURATION DATA
0 = INPUT HARDWALL DATA
1 = NO HARDWALL DATA

FOR BOTH INDX CASES FOLLOWING INPUT FILES ARE NECESSARY

oNeNe NN Ee e o NeEe e o N N N N o e Ro Ko e N N e e o e o e No N o N R R e e No e e Ko N e O K]

HWREFINT = INTERNAL SPL & PWL FILE FOR REFERENCE HARDWALL

TRTREFINT = INTERNAL SPL & PWL FILE FOR REFERENCE TREATED

TRTREFEXT = EXTERNAL SPL & PWL FILE FOR REFERENCE TREATED

REFILSCOEFF = FREQUENCY FACTOR FILE FOR NEW TREATED CONFIGURATION
INPUT IF ITEST=1, OUTPUT IF ITEST=0

TRTOUTPUT = NEW (ITEST=1) OR REFERNCE (ITEST=0) TREATED CONFIG

QUTPUT FILE, contains:
INTERNAL SPL & PWL
TOTAL SPL & PWL
SUMMARY CALCULATIONS OASPL, PNL, PNLT, EPNL

IF INDX=0 FOLLOWING HARDWALL REFERENCE INFORMATION REQUIRED

IRDG = HARDWALL CONFIGURATION IDENTIFIER

HWREFTOTAL = TOTAL SPL & PWL FILE FOR REFERENCE HARDWALL

CONFIG (INPUT) -
EXTERNAL SPL & PWL FILE FOR REFERENCE HARDWALL CONFIG
(INPUT)

HWREFEXT

cNeNoNoNo N NeNe NP N N KD!
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HWOUTPUT

IMPDFL

= TOTAL, INTERNAL, & EXTERNAL SUMMARY FILE FOR HARDWALL
CONFIG (OUTPUT)

FILE USED TO INPUT TREATMENT PANEL IMPDENCE
(FREQUENCY, RESISTANCE, & REACTANCE)VALUES INSTEAD OF
USING ONE OF THE PREDICTION METHODS DEFINED BY THE
PPANEL INPUT ABOVE.

THE FILE MUST CONTAIN 3 COLUMNS OF DATA WITH NO EADER:
FREQUENCY, RESISTANCE, REACTANCE AND HAVE AT LEAST
'"NFREQ' NUMBER OF FREQUENCIES (ROWS) OF DATA.

P )

You can leave IMPDFL blank if using one of the PPANEL predictions.

Namelist $SDOF_WM definitions:

R100

NLF
XMBYRC
DCV
RHO
TDF
SPL

DC FLOW RESISTANCE AT 100CM/SEC (CGS RAYLS) AT GRAZING
FLOW TEMPERAURE

NONLINEAR FACTOR AT 150CM/SEC BY 20CM/SEC

MASS REACXTANCE

DEPTH OF LINER CAVITY (IN)

DENSITY (G/CM"3)

TEMPERATURE (DEGREE F)

SOUND PRESSURE LEVEL IN EACH FREQUENCY BIN (DB)

Namelist $SDOF_PP definitions:

DCcv
SIGMA
THK
DMTR
CDCH
MACH
BLT
RHO
TDF
SPL

It

DEPTH OF LINER CAVITY (IN)

FACESHEET POROSITY

FACESHEET THICKNESS (IN)

FACESHEET HOLE DIAMETER (IN)

FACESHEET HOLE (ORIFICE) DISCHARGE COEFFICIENT
FLOW MACH NUMBER OVER FACESHEET

BOUNDARY LAYER DISPLACEMENT THICKNESS (IN)
DENSITY (G/CM"3)

TEMPERATURE (DEGREE F)

SOUND PRESSURE LEVEL IN EACH FREQUENCY BIN (DB)

Namelist $BULK definitions:

RSTV

DCV
RHO
TDF
SPL

BULK B/A RESISTIVITY (CGS RAYLS/CM)AT GRAZING FLOW
TEMPERAURE

DEPTH OF LINER CAVITY (IN)

DENSITY (G/CM"3)

TEMPERATURE (DEGREE F)

SOUND PRESSURE LEVEL IN EACH FREQUENCY BIN (DB)

Namelist $BULK WM definitions:

RSTV

R100
NLF
DCV
RHO
TDF
SPL

isNeNeNoNsNe o NoNoNoNoNoNoNoNoNoNeNe No N o Ne No No o No Ne Ne Ne e Re Ro Ro Ro o Ro No Ro R o oo RoRo o R Re Ro o N e o NeNe Ne N Ne

Q

"

BULK B/A RESISTIVITY (CGS RAYLS/CM)AT GRAZING FLOW
TEMPERAURE

DC FLOW RESISTANCE AT 100CM/SEC (CGS RAYLS)
NONLINEAR FACTOR AT 150CM/SEC BY 20CM/SEC

DEPTH OF LINER CAVITY (IN)

DENSITY (G/CM"3)

TEMPERATURE (DEGREE F)

SOUND PRESSURE LEVEL IN EACH FREQUENCY BIN (DB)

Namelist S$BULK_PP definitions:
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RSTV = BULK B/A RESISTIVITY (CGS RAYLS/CM)AT GRAZING FLOW
TEMPERAURE

DCV = DEPTH OF LINER CAVITY (IN)

SIGMA FACESHEET POROSITY

THK FACESHEET THICKNESS (IN)

DMTR FACESHEET HOLE DIAMETER (IN)

CDCH FACESHEET HOLE (ORIFICE) DISCHARGE COEFFICIENT

MACH = FLOW MACH NUMBER OVER FACESHEET

BLT = BOUNDARY LAYER DISPLACEMENT THICKNESS (IN)

RHO = DENSITY (G/CM"3)

TDF = TEMPERATURE (DEGREE F)

SPL = SOUND PRESSURE LEVEL IN EACH FREQUENCY BIN (DB)

Namelist $AABULK definitions:

= SILICON CARBIDE

= T-FOAM

= FELTMETAL MATERIAL

= NO FACE SHEET

= PERFORATE FACESHEET

= LINEAR FACESHEET

FMACH = STEADY GRAZING FLOW MACH NUMBER
BLDIS = BOUNDARY LAYER DISPLACEMENT THICKNESS, INCHES
DEPINCH = DEPTH OF FOAM, INCHES

TFARH = TEMPERATURE, DEGREES FARENHEIT
PSIA = PRESSURE, PSIA

c
C
C
C
C
Cc
c
C
C
c
c
C
c
C
c
c
C IBULK =
C
Cc
C
C
c
C
C
c
c
C
C OASPL = OVERALL SOUND PRESSURE LEVEL, DECIBELS
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C

IFACE =

NP OWNDR

RESBO = STEADY FLOW IMPEDANCE/(RHO*C) FOR LOW INCIDENT VELOCITY,
/INCH AT AMBIENT TEMPERATURE

RESB100 = STEADY FLOW IMPEDANCE/ (RHO*C) AT 100 CM/SEC INCIDENT
VELOCITY, /INCH AT AMBIENT TEMPERATURE

SIGPERF = PERFORATED PLATE OPEN AREA RATIO

PERFORATED PLATE THICKNESS, INCHES

PERFORATED PLATE HOLE DIAMETER, INCHES

LINEAR FACESHEET STEADY FLOW IMPEDANCE/ (RHO*C) FOR LOW

INCIDENT VELOCITY

LINEAR FACESHEET STEADY FLOW IMPEDANCE/ (RHO*C) AT 100

CM/SEC INCIDENT VELOCITY

POROSITY OF BULK MATERIAL

THKPERF
DIAMPERF
RESLFO

i

RESLF100

POROS

Namelist S$ILOSS definitions:

XL = HEIGHT OF THE RECTANGULAR DUCT (IN)
YL = WIDTH OF THE RECTANGULAR DUCT (IN)
ZL = LENGTH OF THE RECTANGULAR DUCT (IN)
NDS = NUMBER OF INTERPOLATION STEP SIZES
DSARRAY NDS NUMBER OF INTERPOLATION STEP SIZES
MZU MACH NUMBER IN AXIAL (Z-) DIRECTION OF RECTANGULAR DUCT
FTR = FLUID TEMPERATURE (DEGREE R)
NUMBER OF TREATED SIDES:
1 - ONE SIDE LINED
2 - OPPOSITE TWO SIDES LINED
DIAGNOSTIC OUTPUT FROM INSLOSS SUBROUTINE: 0 = NO, 1 = YES

NSIDE

1]

IPRTSUMS
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A.2 Procedure to Predict Liner Performance and Effectiveness: To predict acoustic
characteristics of a treated ejector, farfield measured acoustic data for the mixer-ejector with
hardwall and with a treated configuration at the desired aerothermodynamic conditions is
required. Utilizing the measured farfield sound pressure level (SPL) spectral data for these
two configurations the internal and external SPL spectra are evaluated. The internal SPL for
hardwall (HWREFINT.dat) and internal (TRTREFINT.dat) and external (TRTREFEXT.dat)
SPL for treated configurations are then used as input to the computer code to evaluate the
acoustic characteristics of treated ejector with any other arbitrary liner designs. The code is
first utilized for the tested treated configuration (ITEST=0) using the above-mentioned SPL
spectral data and the liner specifications as input to evaluate the frequency factor y(f)
spectrum (REFILSCOEFF.dat). Then, the acoustic characteristics of treated ejectors of
different liner designs (ITEST=1) for the same aerothermodynamic conditions are evaluated
using the above-mentioned three SPL spectra, the evaluated frequency factor y(f) spectrum,
and the liner specifications as input. Typical example of both these operations are described

below.

Prediction of acoustic suppression undergoes an iterative process utilizing a step size
(DSARRAY) for each frequency. Some time the the function does not converge due to
numerical instability. This is usually overcome by changing the DSARRAY step size. The
current code has the provision to input a maximum of 10 DSARRAY values (NDS). If the
function does not converge after using all the prescribed step sizes the suppression for this
frequency is evaluated by interpolating the data for the adjacent frequencies. The user can
run the program again by selecting different DSARRAY values if not satisfied with the

interpolated result.
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A.6 Sample Input File for the Program to Evaluate Frequency Factor y(f) Spectrum
(ITEST=0): The input data file is for a 1/7-scale mixer-ejector with mixer 8¢ (NRA model)
for the takeoff conditions (NPR=3.43, T8=1551°R, V;=2359 ft/sec, M=0.32).

$EPROC
IPRINT =0
NANG = 13
NFREQ = 24
DIST = 1629.
FLTVEL = 360.
ICON = 100
HWREFINT = 'HWREFINT.dat'
TRTREFINT = 'TRTREFINT.dat'
TRTREFEXT = 'TRTREFEXT.dat'
REFILSCOEFF = 'REFILSCOEFF.dat’
TRTOUTPUT = 'TRTOUTPUTtestO.out’
INDX =1
PPANEL = 'BULK_PP'
TPSFRQ = 400.
ITEST =0
$END
$BULK_PP
TDF = 500
RSTV = 8.45
DCV = .485
SIGMA = .37
THK = .025
DMTR = .045
RHO = .000609
CDCH = .76
MACH = 0.8
BLT = .05
SPL = 43.67,144.64,145.64,146.68,147.65,148.62,149.69,150.66,
151.63,152.63,153.67,154.64,155.64,156.68,157.65,158.62,
159.69,160.66,6*161
$END
SAABULK
IBULK = 1,
IFACE = 1,
FMACH = 0.8,
BLDIS = 0.078,

DEPINCH =.485,
TFARH = 500.0,
PSIA = 13.24,
OASPL = 171.5,
RESBO = 0.34,

RESB100 = 0.539,
SIGPERF = 0.37,
THKPERF = 0.025,
DIAMPERF = 0.045,
RESLFO0 = 0.1252,
RESLF100 = 0.2088,

POROS = 0.95,
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SEND

$ILOSS
XL = 6.56
YL = 9.64
ZL = 21.48
NDS =1
DSARRAY = .0001
MZU = .85
FTR = 990
NSIDE = 2
IPRTSUMS =0

$END
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A.7 Data Contained in Output File 'REFILSCOEFF.dat’
SPECTRAL ENERGY TRANSMISSION LOSS FOR TREATED EJECTOR
EJECTOR DIMENSIONS: XL= 6.56 YL= 9.64 ZL= 21.48 INCHES

MACH NO ALONG Z-DIRECTION= 0.85
TEMPERATURE= 990.00 DEGREE RANKINE

NO OF TRANSVERSE MODES IN X-DIRECTION, NRM = 50
NO OF TRANSVERSE MODES IN Y-DIRECTION, NSM = 1
FREQFS FREQM IL DELPWL COEFF
50. 400. 0.700 0.400 0.933
63. 500. 0.940 0.500 0.904
79. 630. 1.200 0.600 0.871
100. 800. 1.530 0.800 0.845
125. 1000. 2.150 0.900 0.750
158. 1250. 2.710 1.000 0.675
199. 1600. 3.650 1.300 0.582
251. 2000. 4.530 1.500 0.498
316. 2500. 6.520 2.000 0.353
398. 3150. 8.820 2.300 0.223
501. 4000. 11.770 2.900 0.130
630. 5000. 14.790 3.500 0.074
794. 6300. 15.960 4.300 0.068
1000. 8000. 13.770 4.700 0.124
1258. 10000. 12.090 6.900 0.303
1584. 12500. 10.550 9.000 0.700
1995. 16000. 10.580 9.400 0.762
2511. 20000. 11.120 9.000 0.614
3162. 25000. 11.110 8.000 0.489
3981. 31500. 10.560 7.000 0.441
5011. 40000. 10.000 6.900 0.490
6309. 50000. 8.650 7.300 0.733
7943. 63000. 7.050 8.300 1.334
10000. 80000. 5.270 8.900 2.307
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A.8 Data Contained in Output File 'TRTOUTPUTtest0.out'
Input parameters for Impedance:

Bulk Resistivity (rayls/cm) = 8.45
Facesheet Porosity .37
Facesheet Hole Dia. (in.) 4 .500000000000000E-02
Facesheet Thickness (in.) 2.500000000000000E-02

L | [ I |

Axial Mach Number .8
Temperature (deg. F) 500.0
Panel Depth (in.) .485

Input parameters for Acoustic Suppression:

Ejector Height (in.) = 6.56
Ejector Width (in.) = 9.64
Ejector Length (in.) = 21.48
Axial Mach No. = .85
Temperature (deg. R) = 990.0
Frequency Resistance Reactance Suppression, dB
400 1.717E+00 -1.206E+01 -3.093E+00
500 1.722E+00 -9.625E+00 -1.286E-01
630 1.685E+00 -7.632E+00 -1.982E-01
800 1.620E+00 -6.011E+00 -2.278E+00
1000 1.548E+00 -4.809E+00 -2.152E+00
1250 1.473E+00 -3.840E+00 -2.170E+00
1600 1.392E+00 -2.977E+00 -4.114E+00
2000 1.326E+00 -2.343E+00 -4 .526E+00
2500 1.270E+00 -1.815E+00 -6.525E+00
3150 1.223E+00 -1.352E+00 -8.821E+00
4000 1.188E+00 -9.391E-01 -1.177E+01
5000 1.170E+00 -5.930E-01 -1.479E+01
6300 1.171E+00 -2.541E-01 -1.596E+01
8000 1.204E+00 1.021E-01 -1.382E+01
10000 1.300E+00 4.764E-01 -1.209E+01
12500 1.592E+00 9.397E-01 -1.008E+01
16000 2.842E+00 1.009E+00 -9.364E+00
20000 2.102E+00 -4.498E~01 -1.212E+01
25000 1.388E+00 3.544E-01 -1.231E+01
31500 1.794E+00 1.264E+00 -9.800E+00
40000 1.783E+00 3.907E-01 -1.183E+01
50000 1.819E+00 1.579E+00 ~-7.815E+00
63000 1.533E+00 1.398E+00 -7.027E+00
80000 1.619E+00 1.680E+00 -5.257E+00
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A.9 Sample Input File for the Program to Evaluate Acoustic Characteristics of Treated
Ejector of an Arbitrary Liner Design (ITEST=1): The input data file is for a full-scale
mixer-ejector with mixer 8c for the takeoff conditions (NPR=3.43, T8=1551°R, V;=2359
ft/sec, M=0.32).

$EPROC
IPRINT =0
NANG = 13
NFREQ = 24
DIST = 1629.
FLTVEL = 360.
ICON = 113
HWREFINT = 'HWREFINT.dat'
TRTREFINT = 'TRTREFINT.dat'
TRTREFEXT = 'TRTREFEXT.dat'
REFILSCOEFF = 'REFILSCOEFF.dat'
TRTOUTPUT = 'TRTOUTPUTtestl.out'
INDX =1
PPANEL = 'BULK_PP'
TPSFRQ = 50.
ITEST =1
SEND
$BULK_PP
TDF = 500
RSTV = 10
DCV = 2
SIGMA = .4
THK = .04
DMTR = .04
RHO = .000609
CDCH = .76
MACH = 0.8
BLT = .2
SPL = 151,152,153,154,155,156,157,158,159,160,161,162,163,
164,165,166,167,168.4,169.4,170.4,170.4,170.5,171.3,171.5
$SEND
$AABULK
IBULK = 1,
IFACE = 1,
FMACH = 0.8,
BLDIS=0.078,
DEPINCH = 2.0,
TFARH = 500.0,
PSIA = 14.5,
OASPL = 180,
RESBO = 0.34,
RESB100 = 0.539,
SIGPERF = 0.40,
THKPERF = 0.04,
DIAMPERF = 0.04,
RESLF0 = 0.1252,
RESLF100 = 0.2088,
POROS = 0.95,
$SEND
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$ILOSS

XL = 48.69
YL = 71.17
ZL = 166.8
NDS = 8
DSARRAY = .0001,.00001, .00000%,.001,.002,.0002,.00002,.000002
MzZU = .85
FTR = 990
NSIDE =2
IPRTSUMS =0
$END
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A.10 Data Contained in Output File 'TRTOUTPUTtestl.out'
Input parameters for Impedance:

Bulk Resistivity (rayls/cm) = 10.0

Facesheet Porosity .4

Facesheet Hole Dia. (in.) 4.000000000000000E-02
Facesheet Thickness (in.) 4.000000000000000E-02

Axial Mach Number = .8
Temperature (deg. F) = 500.0
Panel Depth (in.) = 2.0

Input parameters for Acoustic Suppression:

Ejector Height (in.) = 48.69
Ejector width (in.) = 71.17
Ejector Length (in.) = 166.8
Axial Mach No. = .85
Temperature (deg. R) = 990.0
Frequency Resistance Reactance Suppression, dB
50 -1.091E+00 -2.649E+01 .000E+00
63 -2.666E-01 -2.064E+01 .000E+00
80 3.317E-01 -1.595E+01 -5.896E-01
100 7.209E-01 -1.253E+01 -7.143E-01
125 9.908E-01 -9.852E+00 -7.311E-01
160 1.190E+00 -7.547E+00 -7.935E-01
200 1.305E+00 -5.927E+00 -2.475E+00
250 1.378E+00 -4.648E+00 -2.538E+00
315 1.424E+00 -3.602E+00 -4 .049E+00
400 1.450E+00 -2.752E+00 -5.574E+00
500 1.464E+00 -2.119E+00 -7.165E+00
630 1.475E+00 -1.589E+00 -9.228E+00
800 1.489E+00 -1.143E+00 -1.150E+01
1000 1.513E+00 -7.958E-01 -1.378E+01
1250 1.555E+00 -4.995E-01 -1.487E+01
1600 1.640E+00 ~-2.209E-01 -1.354E+01
2000 1.775E+00 -2.293E-02 -1.266E+01
2500 1.979E+00 6.885E-02 -1.240E+01
3150 2.159E+00 -6.635E-02 -1.223E+01
4000 1.990E+00 -2.820E-01 -1.224E+01
5000 1.728E+00 -1.380E-01 -1.157E+01
6300 1.757E+00 1.374E-01 ~-1.152E+01
8000 1.875E+00 9.568E-02 -1.004E+01
10000 1.722E+00 2.254E-01 -8.846E+00
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APPENDIX B

LINER SUPPRESSION IN EPNdB FOR FULL SCALE MIXER-EJECTOR AT
APPROACH CONDITIONS

Acoustic suppression in terms of EPNL for full-scale mixer-ejector nozzles at takeoff and
cutback conditions are predicted using the measured data for the NRA model with mixer 8c
tested in Cell 41. However, there is no test data available for the NRA model at approach
condition. Thus, the current predictions are made using the measured data for LSMS model
tested at LSAF of Boeing. The approach condition requirements for the 3770.60 engine are
as follows:

Altitude = 394’

Airspeed = 270’ /sec (i.e., M=0.24)
NPR=1.466

Primary velocity =1051"/sec
Primary temperature = 9370R
Primary flow rate=358 lbm/sec
Primary area = 8.555 sq ft
Secondary velocity = 392 ft/sec
Secondary temperature = 541.50R
Secondary flow rate = 373 Ibm/sec
Secondary area = 13.448 sq ft
Mixing length = 10.764 ft

Ejector diameter = 5.228 ft
Ejector lining length = 7.689 ft
Throat area = 7.544 sq ft

MAR =0.98

The test conditions for the data used for the current prediction are closely matched with the
above parameters. However, the MAR for the configuration is 0.9 instead of 0.98, since there
was no data for this MAR at a flight Mach number of 0.24. The flow and temperature
conditions at the liner surface and mean flow conditions are obtained by extrapolating the

data used for takeoff and cutback conditions and are listed below;
Temperature at liner surface=225°F

Mach number at liner surface = 0.63

Mean flow temperature=250°F

Mean flow Mach number=0.65

OASPL=157.5dB

The measured data exhibits some anomaly at angles greater than 90°, especially for the
treated conditions (see Figure B1). The source separation using these data resulted in
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unrealistic spectral shapes for the components. Thus, the data is modified, as shown in Figure
B1, for the current exercise. The modified data is used to extract various spectral noise
components for hardwall and fully treated configurations. Extracted spectral results at typical
angles are shown in Figures B2 and B3. The impedance spectra for the test conditions are
constructed using the measured normal impedance of the liner configuration at ambient
condition and the predicted impact of flow temperature and sound intensity on the impedance
levels for approach conditions (see Figure B4). The internal acoustic suppression spectrum is
thus predicted using the constructed normal impedance for the LSMS mixer-ejector. Utilizing
the predicted internal acoustic suppression and the extracted internal component of PWL and
SPL spectra all the relevant correction factor spectra are derived.

Normal impedance spectra at approach for four different liner designs made for full-scale
mixer-ejector is evaluated. The four liner designs include an optimum design with a bulk of 8
Rayls/cm, design #1 with 12 Ibf/cft T-Foam, design #2 with 8 Ibf/cft T-Foam, and design #3
with 100 ppi SiC. For these designs a 40% porous 0.04” thick facesheet with 0.04” diameter
holes is utilized. While the normal impedance for the optimum liner is predicted the normal
impedance for the other three designs is constructed using the measured ambient impedance
data. Figure B5 shows the construction process for these liner designs at approach conditions
(T=225°F and M=0.63). Utilizing these impedance spectra for the full-scale liner
configurations the corresponding acoustic suppressions are predicted. The normal impedance
and the corresponding acoustic suppression spectra for these liners are shown in Figure B6.
The results for the LSMS test case are also plotted in this figure. For the sake of
compatibility multiplying the linear scale factor of the designs normalizes the frequency for
these plots. Utilizing the predicted acoustic suppression and the evaluated correction factor
spectra the farfield noise for each of the four liner designs are computed. Figure B7 shows
the PNL directivities compared with the hardwall data. The predicted EPNL for various liner
configurations are listed in Figure B7 and Table B1. Suppressions of about 2.5 and 3.3
EPNdB are noticed for the total and internal noise components, respectively.

It is important to examine the data at forward arc, especially at angles 50° to 80°, that the
internal components are not accurately extracted. Figure B2 for 50° case indicates that the
internal noise for hardwall and treated cases are very significant and are the same in
magnitude. This is physically not possible. Internal noise radiation is relatively small at these
angles. Even if we assume that the internal noise is radiated to these angles as extracted for
hardwall the corresponding levels for treated case should have been lower, since significant
internal noise suppression is observed at higher angles. Therefore, the strong internal noise
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Figure B2. Measured SPL spectra compared with the modified predicted external
components (i.e., merged and premerged) and extracted internal components for
hardwalled and fully treated 160” long ejector for LSMS model; NPR=1.5,
T8=965°R, V;=1050 ft/sec, M=0.24 {approach}.
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components obtained at these angles are not real. Most likely, noise radiated from the ejector
inlet might have contributed to this effect. Thus, with hypothetically strong internal noise
components at angles 50° to 80° the PNL directivity becomes unreal. Therefore, the predicted
internal noise suppression is not accurate. If the internal noise spectra at these angles are
appropriately corrected then the internal noise suppression will be much higher than the
numbers shown in the table. The total suppression levels may not change significantly but
their trends with respect to different liner configurations may be different.

It should be noted that the optimum liner is not optimum for this condition, since the

optimization is carried out for takeoff condition.
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APPENDIX C

ACOUSTIC SUPPRESSION DUE TO SDOF TYPE LINER DESIGNS FOR LSM
MIXER-EJECTOR NOZZLES

C.1 Introduction: Bulk absorber type liners are the primary candidates for mixer-ejector
treatment in HSCT application. SDOF type liner designs are being pursued for HSCT
application as backup to bulk absorber type liner designs. The objective of the current study
of SDOF liner design with constant depth is to implement this liner in the LSM mixer-ejector
and to demonstrate experimentally the acoustic suppression capability of this design.

Based on the measured and CFD data for DSM models for a typical takeoff condition (i.e.,
NPR=3.43, T8=1551°R) the liner designs are carried out for a grazing flow Mach number M
of 0.8, liner static temperature T of SO00°F, and a static pressure P of 13.24 psi. The cutback
conditions (i.e., NPR=2.48, T8=1291°R) are relatively less severe compared to takeoff. The
boundary layer displacement thickness for the full-scale ejector is assumed to be 0.20”. Thus,
the approximate displacement thickness for LSM (~ 56% scale) is about 0.11”.

Utilizing the temperature, pressure, and grazing flow conditions for takeoff and using
boundary layer displacement thickness for LSM, the liner depth and facesheet properties are
varied to arrive at optimum liner designs (i.e., the optimum normal impedance values are
attained at critical frequencies, especially at and around the peak Noy frequencies). The
optimization of liner design is based on the availability of liner materials and the
manufacturing constraints. The current acoustic suppression prediction for the treated ejector
assumes rectangular duct with acoustic treatment on two opposite surfaces. The remaining
two surfaces are considered to be untreated. Hence, an equivalent treatment length is
calculated for the treated ejector, assuming that, the entire treatment is on the two opposing
flap surfaces. The equivalent length is utilized in acoustic suppression prediction. Various
model-scale mixer-ejector tests have indicated that the treatment on sidewalls is as effective
as on flaps. Hence, this procedure is presumed to be reasonable. The acoustic suppression
predictions are made assuming uniform flow of Mach number Mx=0.85 and uniform static
temperature Tx=530°F. The nozzle parameters for LSM Liner design, considered in the

current effort, are listed below:

Nozzle Parameters:

A8 - Square Inches 391
Linear Scale Factor 0.565
Average Sidewall Height - Inches 2747
Flap Width - Inches 40.20
A1/An 6.7
Equivalent Treatment Length - Inches 94.25
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The detail design procedure to establish parameters for a liner to achieve maximum acoustic
suppression is described later in section C.2. Based on those results, a segmented liner
consisting of 3 sections of constant depth but with different facesheet porosity is designed for
LSM application. The liner design parameters for LSM mixer-ejector are listed below:

Liner Parameters:
Peak Noy Frequency - Hz. 5600
Maximum Frequency - Hz. 17900
Facesheet Porosity c, % 20 (Ly), 16 (1), & 13 (L3) -
see Figure Cl1
Facesheet Thickness t, inches 0.018
Facesheet Hole Diameter d, inches 0.03”
Liner Depth D- Inches 0.77
Expected Total EPNL, dB 97.476
Expected EPNL for Internal Noise, dB 92.137
Linear Scale Factor 0.565
OASPL , dB- Takeoff 176.6 - 167.2 dB
OASPL , dB- Cutback 170.0 - 161.0dB
Displacement Thickness, 0 - Inches 0.11

Liners of depth ranging from 0.6” to 0.8 can be used for efficient acoustic suppression, even
though the optimum liner depth on the basis of predicted average EPNL is 0.7”. Based on the
treatment layout for LSM ejector, the appropriate liner segments of facesheet porosities 20%,
16%, and 13% would begin from the mixer exit and would cover ejector lengths of Ly, Lo,
and Ls, respectively, covering the flaps and sidewalls (see Figure C1). The selection of
porosities for the three axial segments is based on axial variation of dynamic pressure on
liners and associated nonlinear effects on impedance. In the current design constant grazing
flow Mach number of 0.8 and static temperature of 500°F are utilized. The optimization may
be improved by utilizing appropriate grazing flow Mach numbers and static temperatures for
individual liner segment designs. Finally, a comparison of acoustic suppression spectra
between SDOF liner design and corresponding bulk absorber type liner designs is shown in
Figure C2. The SDOF design results in a predicted EPNL of about 0.4 dB and 0.45 dB higher

compared to the current bulk absorber liner Design #1 and optimum design, respectively.

In summary, an axially segmented SDOF type liner is described for LSM which yields about
0.4 EPNdB less noise suppression than the current bulk absorber design and 0.45 EPNdB less
than the optimum bulk absorber design. However, further studies in optimizing SDOF liners
are worth pursuing as a backup for bulk absorber designs, for the reason of risk reduction. A
0.6” deep segmented SDOF liner with 0.018”-thick facesheet of 0.044” hole diameter was
planned to be tested in LSM Build #1. However, this test was never materialized. The fact
remains that, such a test for LSM and/or full-scale mixer-ejector to quantify the relative noise

suppression capability of an SDOF liner is worth pursuing.
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C.2 Optimization of SDOF Type Liner Design: Parametric study for the SDOF type liners,
namely, facesheet properties (i.e., thicicness t, hole diameter d, and porosity o), liner depth D,
and dynamic pressure level, are carried out to design an optimum liner. Based on the internal
dynamic pressure data for Gen 2 mixer-ejector nozzles, presented in Coordination Memo No.
GE95-078-N (Ref. 9), the dynamic pressure levels vary along the length of the ejector. The
level seems to be higher closer to the mixer exit and gradually decreases along the ejector
length. The impact of dynamic pressure level is expected to influence the SDOF type liner
design, for which facesheets of relatively lower porosities are used, compared to the
facesheets for bulk absorber liners (nonlinear effect). The ejector is divided into three
segments of approximately equal lengths to establish respective average dynamic pressure
levels in these segments. These different OASPL levels for the ejector are 176.6 dB, 171.6
dB, and 167.2 dB.

A liner depth of 0.6” (D) with a dynamic OASPL of 176.6 dB is utilized to study the effect of
facesheet thickness and hole diameter on acoustic suppression and thereby on EPNdB. To
obtain the optimum normal impedance levels at the desired frequency range (4 to 8 kHz for
LSM) at takeoff condition a facesheet porosity of 20% (o) is selected. Figure C-3 shows the
predicted normal impedance and acoustic suppression spectra for three different facesheet
thicknesses. The effect of facesheet thickness in the range of 0.01” to 0.04” seems to be
negligible on acoustic suppression spectra as observed in Figure C-3 in both sets of
predictions (i.e., by P&W and GEAE), since, the impedance levels for the facesheet
thicknesses considered in this case lie within the optimum range of values. EPNL values
calculated using GEAE’s predicted acoustic suppression gives a minimum value of 97.49 dB
for t=0.018".

Acoustic suppression levels predicted by P&W are lower compared to GEAE’s prediction.
While, both the predictions are based on modal analysis method, the number of modes
utilized by P&W is relatively lower (40 modes) compared to GEAE (50 modes), which may
be the cause of the observed difference. However, the liner design is based on relative

suppression levels rather than the absolute.

Figure C-4 shows the predicted impedance and acoustic suppression spectra for different
facesheet hole diameters for a 0.6” deep liner. The effect of hole diameter is negligible on the
acoustic suppression, since, the impedance levels for the facesheet diameters considered in
this case lie within the optimum range of values. A hole diameter of 0.03” seems to be
slightly favorable on the basis of EPNdB.
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Effect of facesheet porosity on acoustic suppression is studied at three OASPLs for a 0.6”
deep liner with a 0.018” thick facesheet. f*‘igure C-5 shows the predicted normal impedance
and acoustic suppression spectra for an OASPL of 176.6 dB. The acoustic suppression is
highest for a 20% porous facesheet. The suppression is lower for other designs of different
facesheet porosities, especially, for facesheets with lower porosities for which the resistance
levels are much higher compared to the optimum. Similar results for 171.6 dB and 167.2 dB
are shown in Figures C-6 and C-7, respectively. The optimum porosity of the facesheets for
these cases is 16% and 13%, respectively. These results are summarized in Figure C-8 by
plotting EPNL with respect to the facesheet porosity at different dynamic pressure

conditions.

Effect of dynamic pressure level on acoustic suppression is further studied for a 0.6 deep
liner with 0.018” thick facesheet. Figure C-9 shows the predicted normal impedance and
acoustic suppression spectra for a 12% porous facesheet at OASPLs of 167.2 dB and 176.6
dB. For this facesheet, as expected from the earlier results, a higher acoustic suppression is
obtained for 167.2 dB OASPL case. Similar result for a 20% porous facesheet is shown in
Figure C-10 and is found more efficient in suppressing acoustic energy at an OASPL of
176.6 dB.

Efficient acoustic suppression at dynamic pressure levels of 176.6 dB, 171.6 dB, and 167.2
dB is, therefore, achievable for an SDOF type liner with facesheet porosities of 20%, 16%,
and 13%, respectively. Thus, a segmented liner with constant depth but facesheets of
different porosities seems to be the solution for efficient acoustic suppression.

With the segmented liner design the optimum liner depth evaluation is carried out for each of
the three dynamic level and facesheet porosity combinations. Figure C-11 shows the
predicted normal impedance and acoustic suppression spectra for liners of different depths
with a 20% porous facesheet at OASPL of 176.6 dB. A 0.6” or 0.7” deep liner seems to be
the optimum for this case. Similar results for a 16% porous facesheet at 171.6 dB OASPL
and 13% porous facesheet at 167.2 dB OASPL are shown in Figures C-12 and C-13,
respectively. Optimum depths for these cases are 0.7 and 0.6” to 0.7”, respectively. The
EPNL values are plotted with respect to liner depth in Figure C-14.

Finally, the segmented liner results at different liner depths are presented in Figures C-15
through C-17. Figure C-15 shows the predicted normal impedance and acoustic suppression
for 0.6”-deep liners of different facesheet porosities along with the corresponding optimum
dynamic pressure levels. As expected, the impedance as well as acoustic suppression results
are very close to each other for the three cases. Acoustic suppression results for similar liners
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of depths 0.5”, 0.7, 0.8”, and 1.0” are shown in Figures C-16 and C-17. Again, at each depth
the acoustic suppression levels match for all three porosity/dynamic level combinations. The
table below lists the average EPNL with respect to liner depth, assuming that each liner

segment is of equal acoustic suppression contributor:

Liner Depth D, Total Average Average EPNL for
Inches EPNL, dB Internal Noise
Components, dB
0.5 97.803 92.993
0.6 97.506 92.346
0.7 97.476 92.137
0.8 97.507 92.160
1.0 97.857 92.757
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APPENDIX D

LSM BUILD-1 MIXER-EJECTOR TEST RESULTS AND COMPARISON WITH
PREDICTION

The large-scale model of build-1(LSM-1) mixer-ejector was tested in a static stand. Bulk
absorber liner with 1.2”-deep 12 Ibf standard T-Foam and perforated facesheet (6=37%,
t=0.04", d=0.054"") were used for the construction of liner trays. The treatment layout for this
configuration is shown in Figure C1. All the earlier farfield noise predictions for LSM model,
presented in this report, were made for a flight Mach number of 0.32. Since the actual test
was done at static condition it is important to predict the farfield noise at static condition, not
only for the LSM-1 but also for 1/7-scale model. Comparison of data between 1/7-scale and
LSM-1 and data with prediction for LSM-1 would provide useful insight for liner scaling.
Thus, farfield noise for LSM-1 nozzle is predicted utilizing the measured 1/7-scale data at
static condition. The procedure is similar to that of flight case, described in this report. In
addition, LSM-1 and 1/7-scale model (NRA) measured data at static condition is analyzed.

D.1 Total, External, and Internal Noise Components: Tests were conducted at a number
of aerothermodynamic conditions and the data on the ground was measured at sideline and
community locations (i.e., @ of 25° and 90° respectively). Due to the flow and temperature
constraints of the test facility the takeoff condition was not reached. Thus, the data for the
highest pressure and temperature (i.e., NPR=3.25 and T8=1580°R), which is reasonably
closer to the takeoff condition, is analyzed and used for takeoff comparison. Figures D1 and
D2 show the total, internal and external noise components in terms of SPL and PWL spectra
for hardwall and fully treated LSM-1 configurations at this condition.

Similar analyses are made for NRA nozzle (with mixer 8c and 160” full-scale flap) data at
takeoff condition (i.e., NPR=3.43 and T8=1551°R). Bulk absorber liner with 0.485”-deep
100 ppi Silicon carbide with perforated facesheet (6=37%, t=0.025", d=0.045") was used for
ejector treatment. SPL spectra at different polar angles and PWL spectra for total, external,
and internal noise components are compared between LSM-1 and NRA nozzles in Figures
D3 through D6 for hardwall and fully treated configurations. The external noise components
for hardwall as well as treated configurations are reasonably the same between NRA and
LSM-1 nozzles. However, the total and internal components for LSM-1 are higher compared
to NRA nozzle. Similar comparisons are made with respect to PNL directivities in Figure D7.
The EPNL values are listed in this figure. Total and internal noise data for LSM-1 is higher
compared to NRA configuration. In terms of EPNL the LSM-1 is about 0.2 and 2.8 EPNdB
noisier in total noise and in internal noise, receptively, compared to treated NRA data.
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Figure D3. Comparison of SPL spectra at 6=60° between LSM-1 and 1/7-scale NRA (mixer 8c)
nozzles at takeoff conditions at sideline distance of 1629°, A8=1248 in2, Mg=0.0.
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Figure D4. Comparison of SPL spectra at 8=90° between LSM-1 and 1/7-scale NRA (mixer 8c)
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LSM-1 and NRA data for cutback condition is also analyzed. Again, the test conditions are
slightly different between these configurations. Test condition for LSM-1 (NPR=2.5 and
T8=1370°R) is higher compared to NRA model (NPR=2.37 and T8=1238°R). Figures D8
and D9 show the total, internal and external noise components in terms of SPL and PWL
spectra for hardwall and fully treated LSM-1 configurations. SPL spectra at different polar
angles and PWL spectra for total, external, and internal noise components are compared
between LSM-1 and NRA nozzles in Figures D10 through D13 for hardwall and fully treated
configurations. All three noise components, total, external and internal, for LSM-1 are
significantly higher compared to NRA nozzle. Similar comparisons are made with respect to
PNL directivities in Figure D14. The EPNL values, listed in this figure, indicate higher levels
for LSM-1 compared to NRA for each noise components.

D.2 Comparison between Measured and Predicted EPNL: In section 7 three different
liner designs are considered for LSM mixer-ejector treatment. The Design #1 was used for
LSM nozzle tests at static condition. The farfield noise for LSM-1 nozzle with all three liners
is predicted in section 7 for a flight Mach number of 0.32. Following the same procedure the
farfield noise at static condition is estimated in this section. Similar results are also derived
for NRA model at static condition. Predicted normal impedance and the corresponding
acoustic suppression are plotted in Figures D15 and D16, respectively. Table D1 summarizes
the predicted and measured EPNL values for LSM-1 and NRA models for static as well as
simulated flight conditions.

Based on the performance of the liner (i.c., suppression capability for internal noise
component) the predicted levels of 6.42 and 8.48 EPNdB for takeoff and cutback conditions
are about 1.2 to 1.3 dB higher compared to the measured data. Since the predictions are
based on the 1/7-scale model data, these discrepancies could be attributed to several
differences between LSM-1 and NRA models and their aerothermodynamic conditions.
Possible reasons for such differences are listed in Table D2.

D.3 Effect of Incremental Treatment on Noise Suppression: Tests were conducted for
LSM-1 nozzle at cutback condition by increasing the ejector treatment in increments. Figure
D17 illustrates the incremental arrangement of ejector treatment. The measured data is used
to extract the internal noise component for different amount of treatment configurations.
Figure D18 shows the spectral variation of internal noise component due to treatment
variation. SPL levels decrease significantly at the beginning when the treatment area is
increased. However, approaching full treatment the effect of treatment area variation is small
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on noise reduction. This is further demonstrated in terms of PWL spectra and PNL
directivities for total and internal noise components in Figures D19 and D20. Finally, the
noise levels in terms of EPNdB are plotted against the treatment rows (i.e., area) in Figure
D21. Again, the performance as well as the effectiveness of the liner is less sensitive to
treatment area increase towards the final steps to attain full treatment.

This exercise was conducted by increasing the treatment starting from the ejector exit and
increasing towards the mixer exit. Based on the observation it may be concluded that the
treatment closer to mixer exit is not very effective in noise suppression. However, this is not
conclusive on the basis of the way this study was conducted. The approach to verify the
observation is to begin treatment from mixer exit and to march towards the ejector exit.
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APPENDIX E

LINER DESIGN AND FARFIELD NOISE PREDICTION FOR PROPOSED LSM
BUILD-2 (LSM-2) MIXER-EJECTOR

LSM build-1 (LSM-1) test results indicated an increase of about 2.5 EPNdB for hardwall
configuration at cutback for static condition compared to the prediction made utilizing 1/7-
scale test results. For treated configuration the increase is about 4.7 EPNdB. For takeoff the
differences between measured and predicted levels are small. However, the LSM-1 results,
projected for flight Mach number of 0.32, are significantly higher than the target EPNL
values set for FAA requirements. A number of reasons are attributed for the noise increase.
One of the reasons is the bulk absorber material for the ejector treatment, which was not an
optimum bulk. A second LSM (LSM-2) test was then proposed to address all the issues
possibly responsible for noise increase. Various T-Foam bulk materials of different
construction processes are studied (Ref. 3) to reduce the internal noise component.

E.1 Optimization of Facesheet Parameters: Utilizing the measured normal impedance data
for standard 12 Ib/cft 1.2”-deep T-Foam sample with facesheets of varying porosity,
thickness, and hole diameter, the EPNLs are computed for LSM model at static condition.
Similar results are also derived for an optimum bulk of about 20 Rayls/cm at 500°F. Such a
bulk is expected from currently processed T-Foam and/or Silicon Carbide of about 150 ppi.
Since the LSM designs are based on static condition, the sensitivity of various liner
parameters is reduced in terms of total EPNdB due to the higher level of external noise
component. To reflect the effect of various liner parameters on the acoustic suppression, the
EPNGAB of the internal noise component is presented here.

Figure E1 shows the effect of facesheet porosity on predicted normal impedance for the
optimum bulk (a resistivity of 20 Rayls/cm at 500°F), the thickness and hole diameter of the
facesheet being 0.02” and 0.04”, respectively. The reactance and resistance for 40% porous
facesheet lie within the optimum impedance goal for the critical frequency range of 2 to 6
kHz. Figure E2 shows the similar results for a 12 lb/cft T-Foam of standard construction with
facesheet thickness of 0.1” and hole diameter of 0.07”. These results are based on the
measured normal impedance at room temperature conditions. For the entire frequency range
the resistance values are higher compared to the optimum goal, even for 40% porous
facesheet. For a limited frequency range of 2 to 4 kHz the reactance levels meet the optimum

goal. The acoustic suppression for these liners is expected to be poor.
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Figure E3 shows the impedance for four liner designs with 35% porous facesheet. The
configurations for optimum bulk resulted in more acceptable impedance compared to the 12
Ib/cft T-Foam configuration. The impedance level shifts, due to thicker facesheet with larger
hole diameter, are relatively small compared to the shifts caused due to the change of bulk
from optimum to 12 Ib/cft T-Foam. Thus, a significant suppression loss is expected for 12

Ib/cft T-Foam configuration.

Figure B4 shows the effect of facesheet porosity on internal EPNdB noise component for
three different liner configurations. A significant 2 EPNdB difference is experienced between
the optimum bulk and 12 Ib/cft T-Foam configurations. The use of thicker facesheets with
larger hole diameters on optimum bulk show significant suppression loss. A small amount of
EPNdB increase is observed by increasing the hole diameter from 0.07” to 0.1” with the
same 0.1” thick facesheet. The impact of facesheet parameters is small and their trends are
not clear for the T-Foam configurations. This aspect is discussed later. Figure ES is the same
as Figure E4, except the EPNL for hardwall configuration is shown in this plot.

Figure E6 shows the effect of facesheet thickness on internal EPNdB noise component for
four different liner configurations. Again, a significant 2 EPNdB difference is experienced
between the optimum bulk and 12 1b/cft T-Foam configurations. For optimum bulk the EPNL
decreases first and then increases with increasing facesheet thickness; resulting in an
optimum thickness of about 0.04”. Similar trend is also observed with T-Foam configuration,
with d=0.04” and 6=40%. Even with T-Foam configurations, the EPNL is lower for 40%
porous with d=0.04” compared to 35% porous with larger hole diameters.

Figure E7 shows the effect of facesheet hole diameter on internal EPNdB noise component
for four different liner configurations. In general, EPNL increases with increasing hole
diameter. This is more systematic for optimum bulk configurations. The effect of facesheet
thickness increase from 0.02” to 0.1 is clearly observed for optimum bulk. Clear trends are
not observed for T-Foam configurations due to their non-optimum impedance characteristics.
For these cases the change of facesheet parameters brings the impedance levels closer to
optimum goals at some frequencies and makes them worse at other frequencies. The sum
total effect on acoustic suppression is, therefore, becomes arbitrary rather than systematic.

The impact of each of the facesheet parameters is not linear in nature. For example the
impact of hole diameter at a given porosity and thickness will be different at a different
porosity and thickness. One may arrive at a wrong conclusion if the EPNL is interpolated
using the data shown in Figures E4 through E7. For example an EPNL of 93.6 dB can be
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deduced for a 35% porous, t=0.1", d=0.08" facesheet from two sets of data, predicted for (1)
40% porous facesheets of hole diameter d=0.025” with varying thickness and (2) 40% porous
facesheets of thickness t=0.1" with varying hole diameter. To illustrate that the deduced
EPNL is not the same if it is directly predicted for the 35% porous facesheet with t=0.1” and
d=0.08", EPNL for the internal noise component are predicted for 35% porous facesheets of
thickness t=0.1” with varying hole diameter (see Figure E8). Thus, one can obtain the impact
of hole diameter directly for 0.17-thick 35% porous facesheets. As can be seen that the
predicted EPNL for 0.1”-thick 35% porous facesheet with 0.08” hole diameter is 93.86 dB
compared to the previously deduced level of 93.6 dB.

Based on the results presented in this appendix it is evident that the selection of an
appropriate bulk material is very important. The facesheet optimization is effective when an
optimum bulk is used. As indicated in the past and apparent from the current results, a highly
porous facesheet with smaller hole diameter is more effective in acoustic suppression. An
optimum thickness of about 0.04” is acoustically desirable for LSM size liners. Based on the
optimum bulk the EPNL increases by 0.86 dB when the optimum facesheet (i.e., S=40%,
t=0.04”, and d=0.025) is replaced by a 0.1” thick 35% porous facesheet with d=0.1". An
EPNL increase of 0.78 dB is experienced by altering the optimum facesheet to a 0.1 thick
35% porous facesheet with d=0.07". Simply increasing the hole diameter from 0.07” to 0.1”
for the 0.1”-thick 35% porous facesheet the EPNL increase is about 0.1 dB (exactly 0.08 dB

for the current exercise).

E.2 Acoustic Suppression Characteristics of LSM-2 Liner Designs with Different T-
Foam Bulk Absorbers: It clearly evident that the standard T-Foam bulk material is not
suitable for optimum acoustic suppression for LSM scale. Thus, attempts are made to
improve the construction process for T-Foam bulks (Ref. 3). In this process a number of
different T-Foam bulk materials are obtained. One specific construction, in which, several
woven paper layers are imbedded in to the T-Foam at various depths, shows significant
improvement- towards noise suppression. Several such bulk materials are considered for
LSM-2 liners by predicting farfield noise for the absorbers.

Figure E9 shows the normal impedance spectra up to 6 kHz. at ambient conditions for three
different 1.2”-deep T-Foam bulk absorber samples of 1.25” diameter. The standard 12 lb/cft
T-Foam exhibits much higher resistance (between 2.5 to 5 kHz) and reactance (between 1.5
to 4 kHz) compared to the other two samples of special construction. Similar results up to 20
kHz, measured using 0.6” diameter samples, are shown in Figure E10. Similar results up to
20 kHz. are obtained with a number of facesheets of varying porosity, thickness, and hole

NASA/CR—2006-214400 268



L : 4P LLT ="ISVO ‘8°0 = Joquinu yaey mop Swmzesd ‘g 00s = amesduior oness
T [=yidop uww%:_mcoo 19U “68°() = JOqUINU YIBIA| MOJj WeaUI ‘J ()¢S = oEB.E%.&%mBoE ugow .Ao.owlm_z
%om\a SEVI=""A "Y,0851=8L ‘ST'¢=4dN) UOHIPUOD jjoaxe) I8 10103[5 (101095 097 oreds-[Iny) pajesn
[Iny 10§ s1oun] 9jeos C'INSTT snotrea 1oy gpNJH [ewraul paipaid uo p 1sjowelp sjoy 133Ysaoey Jo 109147 ‘g 2y

(your) p ‘43 13NVIA 310H

10 2Lo 10 80°0 90°0 $0°0 200 0o
%LE=0" p0'0=1 g wnwido @ @ @
%56=2 *,01°0=} %ling wnuido ¢ BTy
%0p=0 ,01°'0=} ing wnwndo v—-v ©
%0v=2 *,#0°0=1 Hing wnwndo - t &
%0p=0',20°0=} %ing wnundo @—Hr P G g et
Jp-TTT \ e gp +'0
\\\ \\
\s\\\ —lh _ K -Mw
-~ \\\\\\\ LN
\%..\-Lﬂ!liﬂ\ N =
\\\\ o
-~ il AN Y
47 2|le
ying wnumdo o &
v -~ IoA0 suBisa(] 199ysaoe ] \\
OIND PAUMEId AL °( c0r0=p 003 VoL E=S WOySIAY 07) 8
/ 109ysa0e ] [-INST Yiim o
4 ——=% ying wnwindQ 10§ pajorpaid
el 3

269

gp “INd3

NASA/CR—2006-214400



'dP 0S1 ="TSVO ‘.7 1=yrdap ‘uonipuod jusiqure Je (13ourelp 67'1)
sajduies weo -, 9[edos ST SnoLea 10§ ZHY 9 03 dn enosads souepadun eutiou pansesjy ¢ 2ndi]

ZH% "AON3NO3YA
€

g0

gl

g¢

ZHY ‘AON3ND3HA

4o/q| 2°8 ‘siofke saded g-gv# 0--—-o

Wo/q| cl-Ec# o—a

N —

gl

g0

go

3JONV1SIS3d

JONV.LOVIH

270

NASA/CR—2006-214400



_ dP 05T ="ISVO ‘(' 1=U1dap ‘uontpuos juaiquie je (1o15ueip ,9°0)
so[dures weoy-[, 9[ess ST SNOLLA 10§ ZHY 07, 0) dn enpads ouepadun [euLIou pansesjy 0] 23y

ZH) ‘AON3NO3YA

g0

gt

JONVLSIS3d

g¢

¥o/q) 'L ‘wbs/B0g s1ahe) 1oded §-Gy# v—-— \
¥o/q) L'g ‘wbs/B0g s1ofe Jaded g-2p# o----o / /\
¥o/qi 2} ‘prepuelS-€2# —a
ZHXY ‘AON3ND3Y4 ..Q
0¢ 8| 9l 14} gl 0L ¥ z

271

gl

G0

3ONV13V3d

\/u\/l\xl\l\l\\/ e \.
| P )
\\ i a/ N s 1
P it o7 \ N L, \
e e~ s / - /
ot S S PPl Y —
TS A Pl Bl - y
P T o i
\.\ IR TESNT At Tl /.\\
——T T T . K
S N/
- "
~\ ’~ \\
\\ \1
\ \\’\

G0

NASA/CR—2006-214400



diameter (not shown here). The measured ambient impedance results are corrected for the
ejector flow, temperature, and acoustic intensity environment. These corrections are based on
the existing prediction methods. Figure E11 shows the normal impedance spectra for various
bulk absorbers with a 0.04”-thick and 40% porous facesheet with 0.04” diameter holes for a
typical ejector environment. Similar results, predicted for an optimum bulk of about 20
Rayls/cm at 500°F, are also included in this figure. The constructed normal impedance
spectra for the standard 12 1b/cft T-Foam lies outside the optimum impedance levels (i.e.,
specific resistance of 1.5 to 2 and specific reactance of -0.5 to 0.0) for most frequencies. In
contrast, the optimum bulk normal impedance lies within the optimum limits for most
frequencies. The impedance spectra for the T-Foam with 3 paper layers of 80g/m” are much
closer to the optimum bulk results. It should be noted that the 3 paper layer T-Foam and even
the optimum bulk impedance levels lie slightly outside the optimum impedance limits for

some frequencies, especially, between 3 to 6 kHz.

Thus, the objective is to improve the bulk absorber to meet the impedance
requirements to able to maximize the acoustic suppression. The impedance spectral
characteristics must be better than the so-called optimum bulk.

Utilizing the constructed impedance spectra for various liner configurations the EPNLs for
internal noise component at the takeoff condition are computed for LSM-2 model. Some of
the results are listed in Table E1. As listed in the table, the lowest EPNLs are achieved for
0.04”-thick 40% porous facesheets with 0.04” diameter holes. As a typical example, the
effect of facesheet porosity on internal EPNL for various bulk absorbers is shown in Figure
E12. As expected, the EPNL decreases with increasing porosity. The most important
massage is that the 3 paper layer T-Foam configurations are much better absorbers compared
to the standard 12 Ib/cft type T-Foam configurations. We are about 0.5 internal EPNdB
higher compared to the optimum bulk configurations. Thus, the 3-paper layer
construction needs to be improved further to exceed the optimum bulk results.
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Table E1. Predicted EPNL (dB) for Internal Noise component for LSM Liner Configurations
with T-Foam as the Bulk Absorber

Facesheet Parameters: ¢ LSM-1 [6=20% |06=30% |0c=40% |c=40% |c=35% |o=40%

(%), t (in), d (in) — Faceshee t=0.025"] t=0.025] t=0.025"] t=0.04” | t=0.1” | =0.1
6=37% |d=0.04"|d=0.04"|d=0.04"| d=0.04’| d=0.08"| d=0.08"
Bulk Specifications t=0.04"
d=0.054"
Optimum Bulk, 93.47 94.58 193.62 |9341 93.27 |93.86 93.47
R=20 R/cm

#42 T-Foam with 3 Layers | 93.78 9502 |94.12 |93.76 |93.56 |93.98 |93.71
Paper 80g/m2, 8.7 Ib/cft
#45 T-Foam with 3 Layers | 94.10 9522 (9432 [93.83 (9351 (9435 |94.16

Paper 50g/m2, 7.8 Ib/cft
#23 Standard T-Foam 95.54 96.13 | 9565 |[9546 [95.12 |95.74 |95.50

12 Ib/cft
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